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Rayleigh-Bénard convection in binary-gas mixtures: Thermophysical properties
and the onset of convection

Jun Liu and Guenter Ahlers
Department of Physics and Center for Nonlinear Science, University of California, Santa Barbara, California 93106

~Received 3 February 1997!

We present an experimental investigation of Rayleigh-Be´nard convection in binary-gas mixtures. In order to
interpret the results quantitatively, we determined the necessary thermodynamic and transport properties for six
mixtures~He-CO2, He-SF6, He-Xe, Ne-Ar, Ar-CO2, and H2-Xe! by a combination of data from the literature,
molecular-theory calculations, and thermal-conductivity measurements. All six mixtures have positive separa-
tion ratiosC. The Lewis numberL ~the ratio of the mass to the thermal diffusivity! is of O(1), in contrast to
liquid mixtures whereL5O(1022). An important feature of the gas mixtures is that their Prandtl number~the
ratio of the kinematic viscosity to the thermal diffusivity! can be lower than those of the two pure components.
We discuss the physical reason for this and show that the minimum Prandtl number reached by using binary-
gas mixtures is about 0.16. The critical temperature differenceDTc for the onset of convection is determined
from measurements of the Nusselt numberN ~the effective thermal conductivity! and from the contrast of
shadowgraph images as a function ofDT. The results agree well with the prediction of linear stability analysis.
In contrast to convection in binary-liquid mixtures withC.0, N for the gas mixtures increases significantly
with e[DT/DTc21 as soon as the convection starts at the Soret onset and is qualitatively similar to the
Nusselt number of pure fluids. However, the critical Rayleigh numberRc is lower than the valueRc051708 of
pure fluids. The pattern at onset in the gas mixtures initially consists of parallel straight rolls, in contrast to
binary-liquid mixtures where the pattern consists of squares. Based on the gas-mixture properties, we find that
the Dufour effect~the reciprocal process of the Soret effect! is relatively weak. The slopedN/de of N at onset
is found to be consistent with that predicted by an eight-mode Galerkin truncation.@S1063-651X~97!04206-2#

PACS number~s!: 47.20.Bp, 47.27.Te, 51.20.1d, 51.30.1i
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I. INTRODUCTION

A quiescent horizontal fluid layer heated from below b
comes unstable and undergoes a transition to buoya
driven convection, namely, Rayleigh-Be´nard convection
~RBC!, when the temperature differenceDT across it ex-
ceeds a critical valueDTc . This system has long been use
to investigate many fundamental and practical proble
@1–8#. Particularly, it has become a paradigm in the study
complex spatiotemporal behavior in spatially extended n
linear nonequilibrium systems@6#. This is so for two reasons
On the one hand, RBC lends itself to well controlled, qua
titative experiments@5,8#. On the other hand, the equation
of motion of the system are well known~the Navier-Stokes
equations and associated boundary conditions! and permit a
close connection between theory and experiment, which
led to detailed tests of theoretical concepts@2,3,6#. There has
been a large amount of experimental work on RBC in sing
component liquids and gases and in binary-liquid mixtur
In this paper, we report RBC experiments inbinary-gasmix-
tures and show that they open an alternative parameter r
with different opportunities in the study of RBC.

The primary control parameter for RBC is the Raylei
number

R[
agd3DT

kn
, ~1!

a dimensionless measure of the temperature difference a
the fluid layer. Here
551063-651X/97/55~6!/6950~19!/$10.00
-
y-

s
f
-

-

as

-
.

ge

oss

a[2~1/r!~]r/]T!P ~2!

is the isobaric thermal expansion coefficient (r is the density
and P the pressure!, g the acceleration of gravity,d the
fluid-layer thickness,k the thermal diffusivity, andn the
kinematic viscosity. AsR increases from zero, the destab
lizing density gradient~or buoyancy force! increases. Con-
vection occurs whenR exceeds a critical valueRc (DT ex-
ceeds DTc). For a single-component fluid, the critica
Rayleigh number ~corresponding to DT5DTc0) is
Rc051708, independent of material properties, and the c
vection just above onset consists of stationary rolls. Wh
R increases further aboveRc , various flow patterns and time
dependences evolve@5,9–12#, and turbulence appears at ve
largeR @7#.

The nonlinear behavior of convection aboveRc depends
on the Prandtl number

s[n/k ~3!

as well as onR. Although s does not affect the onset o
convection, it has important effects on secondary instabili
of the convection-roll patterns. For the idealized case of
finitely extended parallel straight rolls, Busse and collabo
tors @2,13–15# have determined the main features of the
instabilities as well as their boundaries as a function ofR,
s, and the roll wave numberk. These predictions describ
fairly well also the case of convection in large but fini
samples whens is large. However, for lows experiments
have revealed complex spatiotemporal behavior atR slightly
aboveRc @5,12,16–18#, where straight rolls are predicted t
6950 © 1997 The American Physical Society
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55 6951RAYLEIGH-BÉNARD CONVECTION IN BINARY-GAS . . .
be stable in the infinite system. To a large extent this ti
dependence of the patterns is associated with roll curva
induced by the sidewalls of the cell, which leads to larg
scale flows. These flows in turn create a wave-number
tribution that, for smalls, overlaps the stability boundarie
of the infinite system@5,12#.

Another parameter relevant to experiments is the lat
extent of a convection cell, as described by the aspect r

G[r /d, ~4!

wherer is the radius for a cylindrical cell. When the syste
is small (G&3), RBC can exhibit temporal chaos@6,19,20#
asR increases fromRc , and the spatial dependence is d
namically unimportant. For largeG, the spatial degrees o
freedom play an important role in the complex evolution
convection patterns, resulting in spatiotemporal ch
@5,17,18,21–24#. Recently it was shown that the onset
spiral-defect chaos, a spatiotemporal chaos occurring o
for G@1 and lows, depends significantly on the aspect ra
@17,18,23,25#.

The nature of Rayleigh-Be´nard convection in pure fluids
is determined by the above three dimensionless num
when the Oberbeck-Boussinesq approximation@26–28# ap-
plies. In this approximation it is assumed that the variatio
of all fluid properties with temperature~except for the den-
sity in the buoyancy force! can be neglected. For most of th
work reported in this paper this approximation is very goo

For binary mixtures, additional parameters are required
describe the nature of the convecting state because o
coupling between concentration and temperature fields. T
coupling results in new phenomena that do not occur in p
fluids, including traveling waves, localized pulses, tim
dependent envelopes of the convection rolls, and square
terns @29–31#. In binary mixtures, temperature gradien
change the concentration field because of thermal diffus
@32,33#. This so-called Soret effect is characterized in RB
by the separation ratio

C[2
b

a

kT
T

52
b

a
C~12C!ST , ~5!

whereb is the solutal expansion coefficient,kT the thermal
diffusion ratio @34#, T the temperature,C the mass concen
tration of the heavier component@see Eq.~14! below#, and
ST5kT /C(12C)T the Soret coefficient. The quantitykT is
defined so that the heavier component moves to the
~hot! region whenkT.0 (kT,0). The thermal expansion
coefficienta @Eq. ~2!# is computed at constantC and

b[2~1/r!~]r/]C!P,T . ~6!

When C,0, the induced concentration gradient stabiliz
the conduction state because the heavy component mov
the hot region and retards the buoyancy. Thus the crit
Rayleigh number is elevated, i.e.,Rc.Rc0. On the other
hand, whenC.0, the induced concentration gradient is d
stabilizing the conduction state and the critical Rayle
number is reduced, i.e.,Rc,Rc0.
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In binary mixtures, the dynamics of the concentrati
variable is associated with an independent time scale g
erned by the concentration diffusivityD. Thus the Lewis
number

L[D/k ~7!

is an important parameter that measures the ratio of
thermal-diffusion time to the mass-diffusion time. For liqu
mixtures,L is small@O(1022)#. In that case it is possible fo
the concentration to temporally lag behind the thermal g
dient. WhenC,0, this can lead to oscillations that are r
sponsible for the existence of traveling waves and other
teresting phenomena@29#. On the other hand, forC.0, the
convection is stationary and the pattern that forms for sm
L is one of squares@30,31,35#. Mass diffusion carries little
heat for smallL and thus forC.0 the heat transport is no
significantly enhanced by the convection forRc,R,Rc0
@30,31#, where the Soret mechanism dominates. In bina
gas mixtures, however,L5O(1) and the heat transport i
enhanced significantly in the rangeRc,R,Rc0, as we will
show in this paper. The pattern immediately aboveRc then
consists of rolls like those in pure fluids.

The coupling of temperature and concentration in bin
mixtures also gives rise to the Dufour effect, which consi
of temperature gradients induced by concentration gradie
It is the reciprocal process of the Soret effect in Onsage
linear reciprocal relations@32,36,37#. Recently, Lu¨cke and
co-workers@37,38# carried out a theoretical study of the ro
of the Dufour effect in RBC. A dimensionless Dufour num
ber @37# was defined as

Q[
Ta2

cpb
2S ]m

]CD
P,T

, ~8!

where m(P,T,C) is the chemical-potential difference pe
unit mass@see Eq.~24! below# andcp is the isobaric specific
heat per unit mass. Note thatQ is a purely thermodynamic
quantity. The coupling strength of the Dufour effect depen
on combinations ofQ, L, andC @see Eq.~10! below#. In
liquid mixtures,L is small and thus the Dufour effect i
negligible @36,37#. On the other hand, in gas mixture
L5O(1) and the Dufour effect may not necessarily be
nored. When the effect is strong, it can significantly chan
the bifurcation topology and the existence regimes of stati
ary and traveling-wave convection@37,38#.

In order to understand the relevance of the Dufour eff
more quantitatively, we examine the various terms in
governing equations@2,37,39# for RBC in binary mixtures.
Scaling lengths byd, time by d2/k, temperature by
kn/agd3, concentration bykn/bgd3, andP/r by k2/d2, the
Oberbeck-Boussinesq approximation leads to@37#

1

s
~] t1v•¹!v52¹P1~u1c!ẑ1¹2v, ~9!

~] t1v•¹!u5Rv• ẑ1~11LQC2!¹2u2LQC¹2c, ~10!

~] t1v•¹!c5RCv• ẑ1L¹2~c2Cu!, ~11!



tity

6952 55JUN LIU AND GUENTER AHLERS
TABLE I. Primary thermophysical properties of pure gases and binary-gas mixtures. The quanX
denotes the mole fraction of the heavier component in a mixture.

Property Pure gas Binary-gas mixture

density r(P,T) r(P,T,X)
shear viscosity h(P,T) h(P,T,X)
thermal conductivity l(P,T) l(P,T,X)
isobaric specific heat~per mole! Cp(P,T) Cp(P,T,X)
mass diffusivity D(P,T,X)
thermal diffusion ratio kT(P,T,X)
chemical-potential differencea m(P,T,X)

aSee Eq.~24! for the definition.
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whereu(x,y,z), c(x,y,z), andp(x,y,z) are the deviations
of T, C, andP from their values in the conduction stat
Here x and y are the horizontal axes,z is the vertical axis
opposite the direction of gravity, andẑ is the unit vector
along z. The Dufour effect changes the temperature-fi
equation@Eq. ~10!# both ‘‘diagonally’’ via LQC2¹2u and
‘‘off diagonally’’ via 2LQC¹2c. Thus a significant Dufour
effect should occur when the parameter combinati
LQC2 and/orLQC are sufficiently large. Although Linz
@40,41# and Hortet al. @37# roughly estimated the paramete
for binary-gas mixtures, there has been no direct assess
of the Dufour effect for anyreal gas mixtures because
complete set of thermophysical properties is rarely do
mented. In this paper, we determine all the necessary p
erties for several binary-gas mixtures with good accuracy
turns out that the role of the Dufour effect in all of these
very minor. The reason for this is thatC tends to be smal
whenQ is large. We test the predictions of linear@37# and
weakly nonlinear@38# theory based on the above equatio
by measuring the critical Rayleigh numberRc , the critical
wave numberkc , and the Nusselt numberN near onset.

One can see from Eqs.~9!–~11! that the Prandtl numbe
s determines the relative weight of the nonlinear ter
v•¹v, v•¹u, andv•¹c. The stability and evolution of con
vection patterns depend greatly on which nonlinear terms
dominant. The termv•¹v can yield a vertical-vorticity field
@5,42# giving rise to large-scale horizontal flows, who
magnitude isinverselyproportional tos. It has been shown
theoretically @42–45# and experimentally@46,47# that the
large-scale flows are responsible for much of the comp
spatiotemporal behavior of convection patterns observe
low Prandtl numbers@5,12,16–18#. Thus it is of great inter-
est to investigate the role ofs quantitatively, especially for
s&1. However, as a material property,s cannot be readily
adjusted in a given experiment. Prandtl numbers of p
gases generally are larger than the value 2/3 derived f
kinetic theory for rigid-sphere molecules@48#. Liquid metals
haves&0.03, but we know of no classical pure fluids@49#
with 0.03&s&0.67. Employing simplified models, Gia
cobbe@50# estimated the Prandtl number for binary nob
gas mixtures involving helium and found thats can reach
about 0.2 for a helium-xenon mixture. In the present pap
we use a more accurate method, based on a combinatio
statistical-mechanical theory and experimental data from
literature and our experiments, to show thats as low as 0.16
can be achieved by a hydrogen-xenon mixture. In our exp
ments we cover the range 0.16&s&1.00 by using different
d
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binary-gas mixtures and pure gases and by changing t
pressures and concentrations. Some results for the effe
the Prandtl number on spiral-defect chaos have been repo
in Ref. @25# and we plan to present more detailed results
another paper@51#.

The rest of this paper is organized as follows. In Sec
we describe the general method used to obtain the ther
physical properties of pure gases and binary-gas mixtu
required in the study of RBC. We also explain why Pran
numbers can be lowered in binary-gas mixtures with
simple model. Section III presents the experimental se
and measurement methods. Experimental results for the
set of convection are presented in Sec. IV. Finally, in Sec
we discuss the relative importance of the Soret and Duf
effects in binary-gas mixtures and give a summary of o
work.

II. THERMOPHYSICAL PROPERTIES
OF BINARY-GAS MIXTURES

Under ideal circumstances the physical properties
gases and their mixtures would be based on experime
determinations. Unfortunately, the amount of experimen
data required for our needs is formidable and we must re
to less satisfactory approaches. Whenever possible, we
experimental measurements. When these were inadeq
we employed theoretical estimates based on kinetic the
and empirical interpolation formulas. This approach does
lend itself to a systematic presentation because the de
vary from case to case. Thus, in this section we attemp
present the general methods that we have used. The de
will differ for different mixtures, and more specific informa
tion including references to the literature for each of them
presented in the Appendix.

To study RBC in gases quantitatively, we need to kn
the ‘‘primary’’ thermophysical properties listed in Table
Other thermodynamic and transport coefficients deriva
from them are the kinematic viscosityn5h/r, the thermal
diffusivity k5l/rcp , the thermal and solutal expansion c
efficients given by Eqs.~2! and~6!, and the specific heat pe
unit masscp5Cp /M . Here

M5M2X1M1~12X! ~12!

is the molar mass of the mixture andM1 andM2 are the
molar masses of the lighter and heavier pure compon
respectively. The mole fractionX of the heavier componen
is given by



d
u
b

o

, i
an
re
th
re

w
an
,
-
rtu
at
lu
ng
ith
s

B
te
oc
e.
b
r
re
e

f

d
-
ha
h
nd

-

n

em
to
n-
o
lu-

es,
n-

t
y

ort
ions
ial

d
our
-
data

vi-
s for
e

ho-
ults.
ro-
v-
al

al-

ry
pair
ata,

on
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X5N2 /~N11N2!, ~13!

whereN1 andN2 are the number of moles of the lighter an
heavier component, respectively. In the hydrodynamic eq
tions the mass concentration often is used and it is given

C5N2M2 /~N1M11N2M2!. ~14!

The relationship betweenX andC is easily derived to be

C5XM2 /M ~15!

and the derivativedC/dX is given by

dC/dX5M1M2~N11N2!
2/~N1M11N2M2!

2. ~16!

We wrote a series of programs to calculate the therm
physical properties of eight pure gases~He, Ne, Ar, Xe,
H2, N2 , CO2, and SF6) and six binary-gas mixtures~He-Xe,
He-CO2, He-SF6, Ne-Ar, Ar-CO2, and H2-Xe! as a function
of temperature and pressure. Using the same procedure
possible to determine thermophysical properties for m
other binary-gas mixtures, especially noble-gas mixtu
The properties calculated in this work are applicable to
range 0°–60 °C and 1–50 bars, except that the partial p
sure has to be lower than 22 bars for SF6 and 30 bars for Xe.

For the eight pure gases, their properties have been
summarized in the literature as functions of pressure
temperature~e.g., see Refs.@52–55#!. On the other hand
despite voluminous work@56,57#, the thermophysical prop
erties are documented incompletely for the mixtures. Fo
nately, considerable success has been achieved in calcul
the equation of state and the transport properties of di
gases and gas mixtures from statistical mechanics, usi
combination of the principle of corresponding states w
intermolecular potentials based on a limited, well-chosen
of accurate measurements@32,58–61#. Such calculations
have reproduced the properties of some pure gases and
mixtures with an accuracy comparable to measurements.
cause the theoretical equations and empirical collision in
grals that we used are complicated and have been d
mented in Refs.@32,59–61#, we do not reproduce them her
In this work, while the pure gas properties were mainly o
tained by fitting literature data, the mixture properties we
determined by a combination of fitting data in the literatu
doing molecular theory calculations, and measuring the th
mal conductivity ourselves.

A. General procedure

1. Density

The densityr(P,T,X) is calculated from the equation o
state

Pv/RT511B~T,X!/v1C~T,X!/v21D~T,X!/v31•••,
~17!

where v is the molar volume,R the gas constant, an
B(T,X), C(T,X), . . . the second, third, etc., virial coeffi
cients. For our eight pure gases, the equations of state
been summarized in the literature, some up to the eight
ninth virial coefficient. For a binary-gas mixture, the seco
virial coefficient is
a-
y
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B~T,X!5~12X!2B1~T!12X~12X!B12~T!1X2B2~T!,
~18!

whereB1 andB2 are the second virial coefficients of com
ponents 1 and 2, respectively, andB12 the secondinteraction
virial coefficient associated with the unlike pair interactio
between components 1 and 2. The coefficientB12(T) has
been measured for many mixtures@62–66# and can be cal-
culated by statistical-mechanical theory for some of th
@59,61#. The third virial coefficient is sometimes necessary
improve the accuracy of mixture densities, but the third u
like interaction virial coefficients are seldom available. S
the third virial coefficients of pure gases were used to eva
ateC(T,X) approximately.

2. Viscosity, thermal conductivity, and heat capacity

For both physical reasons and practical purpos
h(r,T,X) andl(r,T,X) are expressed as a sum of two i
dependent contributions@32,67#. Thus, writingY(r,T,X) for
both properties we have

Y~r,T,X!5Y0~T,X!1DY~r,T,X!. ~19!

HereY0(T,X)5Y(0,T,X) is the contribution to the transpor
property in the limit of zero density, where only two-bod
molecular interactions occur. The second termDY(r,T,X)
represents the contribution of all other effects to the transp
property at elevated densities, such as many-body collis
and collisional transfer. It can be expanded as a polynom
of r,

DY~r,T,X!5Y1~T,X!r1Y2~T,X!r21Y3~T,X!r31•••.
~20!

The expansion~20! is usually kept up to the second or thir
term. For the relatively narrow temperature range used in
experiment,Y1(T,X), Y2(T,X), etc., are sometimes as
sumed to be temperature independent, depending on the
available to us. Similarly, the heat capacityCp(r,T,X) can
also be expressed as Eq.~19! @32#, where the first term is
then due to the molecule’s translational, rotational, and
brational degrees of freedom and the second term stand
the contribution of all intermolecular interactions. For th
pure gases used in our experiment,h, l, andCp are tabu-
lated in the literature and easily can be fitted to Eqs.~19! and
~20!.

For the binary-gas mixtures, the calculation ofh andl is
much more complicated. Different methods have to be c
sen, depending on the available data and theoretical res
For the noble-gas mixtures Ne-Ar and He-Xe, the ze
density viscosityh0 and the zero-density thermal conducti
ity l0 can be calculated from kinetic theory and empiric
integrals given by Kestinet al. @59# with an accuracy of 1%
or so. For the mixtures involving polyatomic molecules,
thoughh0 can be calculated from kinetic theory@61,68#, the
thermal conductivity cannot be treated well by kinetic theo
due to the internal degrees of freedom and anisotropic
potentials. When there are enough reliable experimental d
such as for He-CO2 and Ar-CO2, bothh0 andl0 were ob-
tained by fitting to the data the empirical expressi
@56,69,70#
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Y05
Y01

11A12X/~12X!
1

Y02

11A21~12X!/X
, ~21!

whereY01 andY02 are the zero-density values of the pu
components andA12 andA21 are adjustable parameters.
the case of H2-Xe and He-SF6, we did not find enough data
to apply Eq.~21!. Thus the kinetic-theory equations and em
pirical integrals documented in Ref.@61# were used to calcu
lateh0 for He-SF6, while the equations and integrals bas
on the Lennard-Jones potential summarized in Ref.@68# had
to be employed to determineh0 for H2-Xe. An approximate
method due to Monchicket al. @71,72#, which was summa-
rized later in Ref.@73#, was used to estimatel0 for H2-Xe
and He-SF6. This method relates the mixture thermal co
ductivity to the thermal conductivity of its components a
other properties of the system such as the viscosity and
fusion constants, which can be predicted accurately by
netic theory. To get a good estimation ofl0, these properties
were obtained from experimental data whenever possi
Because the method may have relatively large errors,
final result ofl was checked by our own measurements. W
show later that the approximate method can predictl quite
accurately for He-SF6, but gives a result slightly smalle
than the measured one for H2-Xe. In order to obtain the
pressure dependence of the mixtureh andl, we fitted Eq.
~20! to experimental data whenever possible. When no d
are available, we added the contributions of the two p
components together, i.e., DY(r,T,X)5DY1(r1 ,T)
1DY2(r2 ,T), wherer1 andr2 are the densities of two com
ponents in the mixture andr11r25r. Since the pressure
dependence ofh and l is usually small in our pressur
range, such an approximation should work well.

Because the specific heat of a gas is mainly contributed
the molecule’s translational, rotational, and vibrational d
grees of freedom, we assumed the contribution of unlike
teractions of components 1 and 2 to be negligible. Hence
calculated the mixture heat capacity by adding the contri
tions of the two components together@50,70#:

Cp~P,T,X!5~12X!Cp1~P1 ,T!1XCp2~P2 ,T!, ~22!

whereP1 andP2 are the partial pressures of components
and 2, respectively.

3. Diffusion constant and thermal diffusion ratio

The mass diffusivityD and the zero-density thermal di
fusion ratiokT0 are given by kinetic theory@32,59,61#. The
theory predicts that the productPD is constant for dilute
gases. Hence, in studying the pressure dependence ofD, the
productPD should be studied. To first order, the pressu
dependence of bothPD andkT can be written as@74–77#

Z~P,T,X!5Z0~T,X!@11BZ~X,T!P#, ~23!

whereZ(P,T,X) stands for bothPD andkT , andZ0(T,X)
for their zero-pressure values. The second ‘‘virial coe
cient’’ BZ(T,X) is a function of concentration and temper
ture. Unfortunately, there are only limited data on the pr
sure dependence ofkT andPD. We used the measuremen
of BkT

(T,X) for He-CO2 and He-SF6 by Trengoveet al. up
to 5 atm @76# and employed approximate methods summ
-
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rized in Refs. @74,75# and in Refs. @76,77# to calculate
BD(T,X) andBkT

(T,X), respectively, from the second viria
coefficients of pure gases and mixtures. Dunlop and his
laborators@74–76# have tested these methods experimenta
for several mixtures at relatively low pressures~up to 5 atm
for kT and 9 atm forPD). However, the second virial coef
ficientBkT

(X,T) may not be sufficient because of the stro

pressure dependence ofkT .
Finally, we point out that the value ofkT depends on

which concentration one uses, the mole fractionX or the
mass concentrationC. The original definition ofkT @34# is
based on the mole fraction; however, the mass concentra
is used in the governing equations and the separation r
The two values ofkT are converted from one to another b
kT,mass5(dC/dX)kT,mole, where (dC/dX) is given by Eq.
~16!.

4. Chemical potential

The chemical-potential difference per unit mass of t
mixturem(P,T,C) is given by@39#

m5m2 /M22m1 /M1 , ~24!

wherem1 andm2 are the chemical potentials per mole of th
single components. Assuming the mixtures are ideal ga
@37#, we have

FIG. 1. Shear viscosityh as a function of the mole fractionX of
the heavy component in binary mixtures. The symbols are exp
mental data and the curves are the results calculated from the
used in this work at the correspondingP andT. ~a! The open circles
@78# are for H2-Xe at P51.0 bar andT523 °C, the solid circle
@53# is for pure Xe at the same condition, and the squares@79# are
for He-CO2 at P523.3 bars andT530 °C. ~b! The triangles@80#
are for He-SF6 at P51.0 bar andT525 °C and the diamonds@81#
are for Ne-Ar atP51.0 bar andT525 °C.
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m i5 f i~P,T!1RTln
Ni

N11N2
~25!

for i51 and 2. Then

S ]m

]CD
T,P

5
RT

C~12C!@CM11~12C!M2#
, ~26!

which is used to calculate the Dufour number@Eq. ~8!#. The
quantity (]m/]C)T,P becomes infinite whenC approaches 0
or 1.

5. Accuracy of the calculation

We estimated the accuracy of the above calculations
comparing the results with literature data and our own m
surements ofl for the mixtures. For the pure gases, t
estimated accuracy is better than 2% for all proper
(r, h, l, andCp). For the six binary mixtures, the est
mated accuracies are about 2% forr andh, 2–5 % forl,
4–7 % forD, and 5–10 % forkT0. The accuracy is better fo
noble-gas mixtures than for mixtures involving polyatom
molecules. Because of the strong pressure dependenc
kT and the lack of data at elevated pressures, the accura
kT is relatively poor. There are no experimental data
Cp , but we estimated that its accuracy is within 5% for t
relatively low pressures used in this experiment.

In Figs. 1–3 we present several examples of the sh

FIG. 2. Thermal conductivityl as a function of the mole frac
tion X. The symbols are experimental data and the curves are
results calculated from the fits used in this work at the correspo
ing P andT. ~a! The open circles@82# are for H2-Xe atP50.2 bar
and T540 °C, the solid circle@83# is for pure H2 at the same
condition, and the square~our measurement! is for He-SF6 at
P528.1 bars andT520.5 °C. ~b! The triangles @84# are for
He-CO2 atP528.5 bars andT527.5 °C and the diamonds@85# are
for Ne-Ar atP531.0 bars andT527.5 °C.
y
-

s

of
of
r

ar

viscosity h, the thermal conductivityl, and thereduced
low-density thermal diffusion ratioaT05kT0,mole/X(12X)
as functions ofX. To compare with experimental data, th
calculations were done at the pressures and temperatur
those experiments cited in the figures. The results agree
the experiments within the accuracies given above. It is
teresting to note the agreement between our measuredl and
the calculated one for He-SF6 in Fig. 2~a!. The measuremen
method ofl and more comparisons are given in Sec. III D

B. Dimensionless numbers

Now we can calculate the four dimensionless mate
properties required in the study of RBC in binary-gas m
tures, namely, the separation ratioC, the Lewis numberL,
the Dufour numberQ, and the Prandtl numbers. In Figs.
4–7 these parameters are presented as functions of the
fraction X of the heavy component forP522 bars and
T525 °C. The separation ratioC for all six mixtures isposi-

he
d-

FIG. 3. Reduced low-density thermal-diffusion ratioaT0 as a
function of the mole fractionX. The symbols are experimental dat
and the curves are calculated from the fits used in this work at
correspondingT. Open @86# and solid @76# squares, He-SF6 at
T526.85 °C; open @87# and solid @76# circles, He-CO2 at
T526.85 °C; triangles@88#, H2-Xe at T526.85 °C; diamonds
@89#, Ne-Ar atT521.85 °C.

FIG. 4. Separation ratioC as a function of the mole fraction
X of the heavy component forP522 bars andT525 °C.
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tive ~Fig. 4! and goes to zero atX50 and 1@Eq. ~5!#. The
maximum valueCmax is strongly affected by the molar-mas
ratio

M5M2 /M1 ~27!

~Table II!. If M is close to one, the separation ratio is sma
e.g.,Cmax is only 3.231023 for Ar-CO2. However, when
M@1, the separation ratio can be quite large, as in the c
of He-SF6, whereCmax.0.85. The peak position ofC(X)
shifts to low X asM increases. In the case of noble-g
mixtures, the separation ratio increases monotonically w
M at fixed X. Linz noted similar behavior in a previou
analysis of Lorentz-gas mixtures@41#. This monotonic rela-
tion does not hold well for binary-gas mixtures involvin
polyatomic molecules~Fig. 4!.

The Lewis numbers increase withX from minimum val-
ues between 0.2 and 0.7 nearX50 to maximum values be
tween 1.6 and 22 nearX51 ~Fig. 5!. The maximum value is
22 for He-SF6 and 13.7 for H2-Xe. On the other hand, th
Dufour number is proportional to 1/C(12C) @Eq. ~26!# and
thus diverges in the pure-gas limits~Fig. 6!. Theminimum
value ofQ(X) is about 34 for Ar-CO2 and 3.2 for Ne-Ar,
but Q is close to zero for the other four mixtures wi
M.10 except near the pure-gas limits~Fig. 6!. More inter-

FIG. 5. Lewis numberL as a function of the mole fractionX of
the heavy component. Solid line, H2-Xe; dashed line, He-CO2;
dot-dashed line, He-SF6; dotted line, Ne-Ar. To improve the clarity
of this figure, we do not plot the results for Ar-CO2 and He-Xe,
which are close to those of Ne-Ar and H2-Xe, respectively. For
these dataP522 bars andT525 °C.
,

se

h

estingly, for all mixtures except Ar-CO2, the Prandtl number
is lower than that of either pure component over most of
range ofX ~Fig. 7!. The minimum value ofs decreases
almost monotonically with increasingM as shown in Table
II.

One sees from Figs. 4 and 6 and Table II thatC andQ do
not bothhave large values under the same conditions. Si
the strength of the Dufour effect depends onLQC and
LQC2 @Eq. ~10!#, we plotted these two parameter combin
tions vsX for Ar-CO2 and He-SF6 in Fig. 8. The values of
both LQC and LQC2 are so small for Ar-CO2 that the
Dufour effect is very weak even thoughQ is large. For
He-SF6, the value ofLQC2 is small, butLQC can be rela-
tively large. Hence it is not straightforward to determine t
strength of the Dufour effect for this mixture without add
tional analysis. Therefore, we discuss the influence of
Dufour effect on the onset of convection in detail in Se
V A.

C. Why is the Prandtl number lowered
in binary-gas mixtures?

It is worthwhile to understand why the Prandtl number
lowered in binary-gas mixtures. This may be useful also
design engineering involving heating or refrigeration sy
tems @50,90#, where reducings may increase the heat
transfer coefficient. Kinetic theory for rigid-sphere molecul
@48# predicts h5a(MT)1/2/d2V and l5b(T/M )1/2/d2V,
wherea and b are constants,d is the molecular diameter

FIG. 6. Dufour numberQ as a function of the mole fractionX
of the heavy component. The curves that are not labeled are
H2-Xe, He-Xe, He-CO2, and He-SF6 from top to bottom. The
curves for H2-Xe and He-Xe are nearly the same. For these d
P522 bars andT525 °C.
TABLE II. Molar-mass ratioM5M2 /M1 and minimum Prandtl numbersmin of six binary-gas mixtures.
The values ofC, L, andQ at X50.5 are also shown. For these examplesT525 °C andP522 bars.

Dimensionless properties atX50.5
Mixture M smin C L Q

Ar-CO2 1.1 0.683 0.0032 1.085 37.82
Ne-Ar 2.0 0.628 0.035 0.912 3.519
He-CO2 11.0 0.408 0.268 1.496 0.395
He-Xe 32.8 0.209 0.299 1.285 0.427
He-SF6 36.5 0.300 0.470 2.565 0.166
H2-Xe 65.1 0.168 0.232 1.238 0.357
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and V is a collision integral. For a monatomic ga
cp5(5/2)R/M and s5(h/l)cp52/3. Using a mole-
fraction-weighting ~MFW! approximation, Giacobbe@50#
found

h5a
~12X!~M1T!1/21X~M2T!1/2

~12X!d1
2V11Xd2

2V2
~28!

and

l5b
~12X!~T/M1!

1/21X~T/M2!
1/2

~12X!d1
2V11Xd2

2V2
~29!

for binary noble-gas mixtures. The mixture heat capacity
also cp5(5/2)R/M , with M given by Eq. ~12!. Then the
Prandtl number is

s5
2

3

~12X!1XM1/2

@~12X!1X/M1/2#@~12X!1XM#
. ~30!

FIG. 7. Prandtl numbers as a function of the mole fractionX of
the heavy component. For these dataP522 bars andT525 °C.

FIG. 8. Coefficients of the Dufour effect in Eq.~10!, LQC and
LQC2, for He-SF6 and Ar-CO2. Solid line,LQC2 for He-SF6;
dashed line,LQC for He-SF6; dot-dashed line,LQC2 for
Ar-CO2; dotted line, LQC for Ar-CO2. For these examples
P522 bars andT525 °C.
s

It can be shown analytically that the denominator in Eq.~30!
is larger than the numerator for 0,X,1 if M.1. The de-
nominator equals the numerator for pure gases (X50,1). A
larger value ofM yields a smaller value ofs for a fixed
X. Therefore, the Prandtl number of binary-gas mixtures
always smaller than that of pure gases for a rigid-sph
model. The smallest value ofs decreases with increasin
M. This argument can be extended to binary-gas mixtu
involving polyatomic molecules by employing the Eucke
correction@48# in the estimate of the thermal conductivity o
polyatomic gases. For two pure componentsh/l}M , so the
ratio is small for the light component and large for the hea
one. Since the square roots of the molar masses enter
h/l, the ratio grows relatively slowly asX increases until
X is close to one~see Fig. 9 for an example of a real ga
mixture!. However, in themassheat capacitycp , the mass of
the heavy molecule is more important andcp drops quickly
asX increases from 0 and then begins to level off~Fig. 9!.
Hence the product ofh/l and cp reaches a minimum at a
middle value ofX.

In Fig. 10 we compare the estimates based on the M
approximation with our numerical results forP51 bar and
T525 °C for four mixtures. In the case of a monatom
~noble! gas mixture, the MFW method predicts a minimu
value ofs very close to the real value, but at a somewh
different concentration@Fig. 10~a!#. In the case of mixtures
involving polyatomic gases@Fig. 10~b!#, two MFW curves
are shown for each mixture: the dashed curve assum
polyatomic molecule to be a monatomic one having the sa
mass, while the dot-dashed curve takes the internal deg
of freedom into account when estimating the thermal c
ductivity and heat capacity. It is apparent that the inter
degrees of freedom increase the minimum Prandtl num
The increase is more significant when a polyatomic molec
consists of a larger number of atoms. For example,
molar-mass ratioM of He-SF6 is larger than that of He-Xe
but its minimums is considerably higher than that of He-X
~Fig. 7!. Therefore, H2-Xe is actually the binary-gas mixtur
giving the smallests, since all mixtures with a largerM
involve more internal degrees of freedom.

III. EXPERIMENTAL METHOD

A. Apparatus and gases

The apparatus was described in detail by de Bruynet al.
@8#. We used three convection cells withG530 ~cell 1:

FIG. 9. Ratioh/l ~dashed curve! and the heat capacity per un
masscp ~solid curve! as a function ofX for He-SF6. For this ex-
ampleP522 bars andT525 °C.
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6958 55JUN LIU AND GUENTER AHLERS
r543.2 mm, d51.460 mm!, G529 ~cell 2:
r543.0 mm, d51.500 mm!, and G570 ~cell 3:
r542.3 mm, d50.608 mm!. They consisted of a sapphir
top plate, a diamond-machined aluminum bottom plate,
circular sidewalls made of porous filter paper. The pla
were parallel to within 2mm. The pressure was regulated
60.005 bar. The top plate was held at a constant tempera
Tt regulated to61 mK by circulating bath water, while the
bottom-plate temperatureTb , regulated to60.5 mK, was
varied as the experimental control parameter. The gas-fi
volume outside the convection cell was filled with open-po
foam material to insulate the bottom plate and prevent c
vection.

All gases were purchased from Air Liquide America Co
poration. Their purity was better than 99.99%. We used th
pure gases~Ar, CO2, and SF6) and four binary-gas mixture
~Ne-Ar, He-CO2, He-SF6, and H2-Xe! in convection experi-
ments. By choosing different mixtures and pure gases an
varying their concentration and pressure, we varieds from
0.17 to 1.01,C from 0 to 0.80,L from 0.67 to 6.35, and
Q from 0.07 to 4.51~see Tables IV and V below!. Three
other pure gases~He, Ne, and N2) were used as well to
calibrate the heat conduction of the cell walls.

The H2-Xe mixture was purchased from the manufactu
who specified the mole fraction of xenon to beX549.6%
with an accuracy of better than61%. The Ne-Ar,

FIG. 10. Comparison of our best estimates~solid lines,P51 bar
andT525 °C! with the estimates based on the MFW approxim
tion ~dashed and dot-dashed lines!. The dashed curves correspon
to the approximation that all molecules are monatomic, while
dot-dashed curves take the internal degrees of freedom into acc
in the thermal conductivity and heat capacity.~a! Noble-gas mix-
tures Ne-Ar and He-Xe and~b! the mixtures He-CO2 and H2-Xe,
which involve polyatomic molecules.
d
s

re
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e
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He-CO2, and He-SF6 mixtures were prepared in our labora
tory from the pure gases. Before filling the mixing cylinde
we flushed it with the first component several times. Af
the cylinder was filled with the first component, the press
P1 and temperatureT1 were measured and the gas dens
was calculated from the equation of state. After the sec
component had been added, the final pressureP and tem-
peratureT were measured. The concentration was then
termined from the mixture’s equation of state by finding t
valueX that gives the correct density of the first compone
The pressures and temperatures were always measured
thermal and concentration equilibrium was reached. To m
mize the error from uncertainties in the equation of st
~which is largest at the highest pressures!, the final mixture
pressure was kept as low as possible and yet high enoug
fill the convection cell to the desired pressure of the exp
ment. The concentration accuracy of our mixtures w
6(122) %.

The onset of convection was determined by measuring
Nusselt numberN and the shadowgraph-image contrast.
definition, N51 in the conduction state. As convectio
starts,N increases withDT because the heat transport
enhanced by convection. The convection modulates the t
perature and concentration fields horizontally, leading to s
tial variation of the vertical average of the refractive index
the x-y plane, which is visualized by the shadowgra
method@8,31#.

B. Heat conduction of the cell wall

To measure the Nusselt numberN and the thermal con-
ductivity of the gas mixtures precisely, we calibrated the h
conduction of the cell sidewall using six pure gases~He, Ne,
Ar, N 2 , CO2, and SF6) with a wide range of known ther
mal conductivities. In the conduction state, the conducta
~equal to the heat current per unit temperature difference! of
the gas inside the cell isQg5Al/d, whereA5pr 2 is the
cell area. The conductanceQw of the sidewall, foam, solid
supports, and the gas outside the cell can be modeled as

-

e
unt

FIG. 11. Calibration of the thermal conductanceQ(Tt,0)
~in W/K! for cell 1 atTt521.0 °C. From left to right, the circles ar
the experimental results for SF6, CO2, Ar, N2, Ne, and He. The
solid curve is a fit to the total conductanceQ50.1624
17.427l21.0/(6.5921431.37l). Herel is in W/mK. The dashed
and dot-dashed lines are the gas sample and wall conductanc
spectively.
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TABLE III. Comparison of the thermal conductivities of binary-gas mixtures measured in this exper
(lm) with the ones calculated with our programs (lc).

Mixture T (°C) P ~bars! X 100lm ~W/mK! 100lc ~W/mK! 100@(lm2lc)/lc#

Ne-Ar 23.0 36.65 0.680 2.584 2.560 0.9
He-CO2 21.0 30.60 0.537 4.888 4.730 3.3
He-CO2 22.5 25.97 0.879 2.457 2.459 20.1
He-SF6 20.5 28.10 0.199 7.476 7.539 20.8
He-SF6 25.0 18.79 0.578 3.156 3.162 20.2
He-SF6 20.0 15.33 0.380 4.861 4.711 3.2
H2-Xe 21.0 20.67 0.496 5.539 5.271 5.1
H2-Xe 21.0 35.23 0.496 5.602 5.368 4.4
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transport in porous media@91#. Then the total heat conduc
tanceQ5Qg1Qw can be expressed as

Q5
Al

d
1a1l1a22

1

a3l1a4
, ~31!

wherea1 to a4 are positive and depend on the properties
the filter paper and foam, the geometry outside the cell,
thermal conductivity of solid supports, and so on. These
ting parameters are temperature dependent.

In the experiment, we kept the top-plate temperatureTt
constant and increased the bottom-plate temperatureTb .
This protocol caused the mean temperatureTm5(Tt1Tb)/2
and thus the average thermophysical properties andQ to
vary with DT5Tb2Tt @92#. Furthermore, asDT changed,
the mean concentrationXm inside the convection cell varie
slightly because of the diffusion that resulted from the d
ference of the mean temperatures inside and outside the
The concentration variation also changed the properties
Q. In short, whenDT went up,Tm increased, whileXm de-
creased slightly forC.0. For our mixtures, both increasin
Tm and decreasingXm raised the thermal conductivity, s
Q increased withDT. In the conduction state, we have th
linear relationship

Q~Tt ,DT!5Q0~Tt!1Q8~Tt!DT ~32!

for not very largeDT and the thicker cells 1 (d51.460 mm!
and 2 (d51.500 mm!, as confirmed by the heat-transpo
measurement@see Fig. 12~a!#. The quantityQ8(T) turned out
to be small. For thethin cell 3 (d50.608 mm!, however, we
found that the quadratic termQ9(Tt)(DT)

2 had to be in-
cluded in Eq.~32!. HereQ9 is negative and its absolute valu
is smaller thanQ8 by a factor of 20–100.

We calibrated the cell conduction atT5Tt by extrapolat-
ing Q(Tt ,DT) to DT50. Figure 11 shows a calibration re
sult for cell 1 atT521 °C. The average deviation of th
fitted curve@solid line, Eq.~31!# from the experimental data
~circles! is about 0.4%. The cell contributionQg and the wall
contributionQw are plotted as dashed and dot-dashed cur
respectively, in Fig. 11. We note that the cell wall condu
more than half of the heat. Similar results were obtained
the other cells.
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r

C. The mean concentration forDT>0

For DT.0, the mean concentrationXm in the cell was
slightly smaller than the initial valueX0 at DT50 because
C.0 and the mean temperature inside the cell was lar
than that outside the cell. We obtainedXm by measuring
dQ/dTm52(dQ/dDT) in the conduction state. One has

dQ
dTm

5
]Q
]l

dl

dTm
1S ]Q

]Tm
D

l

~33!

and

dl

dTm
5S ]l

]Tm
D
X

1S ]l

]XD
T

dX

dTm
, ~34!

FIG. 12. Heat-transport measurement for a He-CO2 mixture at
X50.52 andP530.6 bars (G530). ~a! The total thermal conduc-
tanceQ(DT) for the whole range ofDT in this experiment and~b!
Q(DT) near the onset of convection. Two solid lines in~b! are the
linear fits to the data below and above the onset of convect
respectively. Their intersection gives the critical temperature diff
enceDTc56.01 °C.
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TABLE IV. Primary experimental results. Cell 1,d51.460 mm andr543.2 mm; cell 2,d51.500 mm
and r543.0 mm; cell 3,d50.608 mm andr542.3 mm.S1

t andS2
t are also listed here. See the text f

notations.

Run Cell Gas Xmc P ~bars! Tmc (°C) DTc S1
e S1

t S2
e S2

t

1 2 H2-Xe 0.49 20.67 25.83 9.65 0.37 0.71 0 20.28
2 2 H2-Xe 0.49 35.23 22.19 2.38 0.43 0.71 0 20.32
3 1 He-SF6 0.19 28.09 22.53 4.05 0.19 0.18 20.17 20.04
4 1 He-SF6 0.38 15.33 22.96 5.92 0.49 0.79 20.14 20.49
5 1 He-SF6 0.57 18.79 25.58 1.155 1.03 1.27 20.75 21.09
6 1 He-CO2 0.50 20.29 30.30 18.6a

7 1 He-CO2 0.52 30.60 23.99 6.01 0.58 0.94 20.13 20.64
8 1 Ne-Ar 0.66 36.65 26.07 6.13 0.84 1.1620.10 20.70
9 1 He-CO2 0.87 25.97 23.33 1.67 1.11 1.40 20.59 21.23
10 1 Ar 29.73 23.45 4.89 1.08 1.41 20.48 21.25
11 1 SF6 4.95 23.01 4.00 1.12 1.42 20.52 21.25
12 2 CO2 13.81 23.29 4.58 1.12 1.42 20.73 21.25
13 1 CO2 17.74 22.25 2.49 1.23 1.42 21.04 21.25
14 1 CO2 24.92 21.46 0.920 1.21 1.42 20.67 21.25
15 2 CO2 33.25 21.16 0.317 1.23 1.42 20.98 21.25
16 3 He-SF6 0.35 35.85 26.54 11.08a

17 3 He-SF6 0.66 22.05 24.23 6.45
18 3 He-CO2 0.89 37.12 24.40 6.81a

19 3 SF6 13.64 23.87 3.68
20 3 CO2 33.84 22.86 4.71a

aNon-Boussinesq case, hexagonal patterns appeared or coexisted with rolls for very smalle.
e

l

on

d

e

nc

l

ox

r
t-

ac-

hod
nes
se

or
ow-
ure-

d

al-

e

his
an
t to
wall
,
of

ig.
where l5l(Tm) is the mean thermal conductivity. Th
value of ]Q/]l was calculated from Eq.~31!, while
(]l/]Tm)X and (]l/]X)T were evaluated from the therma
conductivity of the gas mixture. The quantity (]Q/]Tm)l is
due to the temperature dependences ofa1 to a4 in Eq. ~31!
and was determined in the calibration of the cell conducti
Assuming all quantities in Eqs.~33! and~34! to be constant,
we get dX/dTm from Eqs. ~33! and ~34! and thus
Xm5X01(dX/dTm)DT/2. ForC.0, dX/dTm,0.

D. Measurement of the thermal conductivity
of the gas mixtures

The thermal conductivityl of a gas mixture is determine
from Eq. ~31! by measuringQ with the gas mixture in the
cell. The measured thermal conductivitieslm and the calcu-
lated ones lc are given in Table III. The deviation
(lm2lc)/lc listed in the table results from the errors of th
thermal conductivity measurement and the determination
the concentration. The latter affectslc .

The values oflm and lc agree well for Ne-Ar and
He-CO2 at X50.879. The deviation of 3.3% for He-CO2 at
X50.537 may be largely due to the concentration error si
we know that the accuracy oflc is within 2% for He-CO2
mixtures by comparinglc with independent experimenta
data in the literature~see the Appendix!. If, for instance,
X50.527, thenlc54.81831022 W/mK, which is only
1.4% smaller thanlm . For three He-SF6 mixtures, the
agreement is reasonably good, indicating that the appr
mate method due to Monchicket al. @71–73# is fairly accu-
rate for this mixture. However,lm is more than 4% large
thanlc for H2-Xe. This deviation can only be partially a
.

of

e

i-

tributed to a concentration error since the concentration
curacy given by the manufacturer is61%. The difference
may be largely due to the approximate nature of the met
and the errors of the force constants for the Lennard-Jo
potential @68#. In the remainder of this paper, we shall u
lm for the H2-Xe mixture andlc for the other five mixtures.

IV. EXPERIMENTAL RESULTS

A. Onset of convection

We determined the onset of convection for each gas
mixture by measuring the heat transport and the shad
graph contrast. A typical example of heat-transport meas
ments is given in Fig. 12 for a run with a He-CO2 mixture
having an initial concentrationX50.537 (P530.60 bars, run
7 in Tables IV and V!. The top-plate temperature was fixe
at Tt521.0 °C, while the bottom-plate temperatureTb was
increased in small steps from 21.0 °C to 33.5 °C. We
lowed 2–6 h~over 2G2tv , wheretv is the vertical thermal
diffusion time! at eachDT for transients to decay befor
taking a time average of the total powerp supplied to the
bottom plate. Figure 12~a! gives the conductanceQ5p/DT
versusDT for this run. WhenDT went up from zero,Q
increased slowly and linearly in the conduction state. T
increase is attributable primarily to the change in the me
concentration discussed in Sec. III C and to a lesser exten
the temperature dependence of gas conductivity and the
conduction. At DT'6.0 °C, Q started to grow faster
showing that convection occurred. An enlarged view
Q(DT) near the onset of convection is given in Fig. 12~b!.
To find the critical temperature differenceDTc precisely, we
fitted straight lines to the data below and above onset in F
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12~b!. Their intersection givesDTc56.01 °C60.01 °C. Re-
sults for DTc obtained by this method are summarized
Table IV. There we also list the mean concentrationXmc and
the mean temperatureTmc at onset. Experiments with pur
gases are given in the table for comparison.

In the shadowgraph method@8,31#, the initial ~incoming!
light intensity is I0(x), wherex is the horizontal position
vector within the cell. The shadowgraph image atDT is de-
noted asI(x,DT). We define the shadowgraph signal as

I ~x,DT!5
I~x,DT!

I0~x!
21. ~35!

When there is no horizontal refractive-index variatio
I (x,DT)50 if we neglect experimental noise. When conve
tion occurs, the refractive index is modulated horizonta
and for small modulationI (x,DT)}dn(x,DT) @8,31#, where
dn(x,DT) is the vertical average of the deviation of the r
fractive index from its mean value. Figure 13 shows the s
tial averagê I 2(x,DT)&x of the square of the shadowgrap
signal as a function ofDT near the ones of convection for th
experiment described in Fig. 12. ForDT,DTc , the small
positive constant value of^I 2&x ~horizontal line in Fig. 13! is
attributable to experimental noise. WhenDT.DTc , there is
an initially linear increase of̂I 2&x with DT as shown in Fig.
13. The critical temperature difference determined by
shadowgraph method isDTc56.01 °C60.01 °C. The two
methods giving the sameDTc demonstrates that the he
transport is enhanced significantly as soon as convec
starts in binary-gas mixtures, similar to the case of pure
ids. In contrast, forbinary-liquid mixtures withC.0, the

TABLE V. Dimensionless parameters and derived results
the experimental runs summarized in Table IV. See the text
notations.

Run s L C Q r c
e r c

t kc
e kc

t

1 0.17 1.13 0.23 0.34 0.61 0.63 2.8 2.9
2 0.18 1.19 0.29 0.34 0.54 0.58 2.8 2.9
3 0.30 0.67 0.80 0.07 0.23 0.25 2.4 2.4
4 0.33 1.52 0.52 0.12 0.45 0.47 2.7 2.8
5 0.43 3.37 0.38 0.20 0.55 0.63 2.8 3.0
6 0.44 1.47 0.26 0.39 0.61 0.63 2.9 2.9
7 0.47 1.61 0.30 0.41 0.62 0.61 2.9 2.9
8 0.64 1.07 0.03 4.51 0.88 0.92 2.8 3.1
9 0.69 5.02 0.08 1.81 0.85 0.89 2.9 3.1
10 0.69 0 1.00 1.00 3.1 3.1
11 0.79 0 0.97 1.00 3.1 3.1
12 0.83 0 1.00 1.00 3.1 3.1
13 0.86 0 0.98 1.00 3.1 3.1
14 0.91 0 0.98 1.00 3.1 3.1
15 1.01 0 1.01 1.00 3.1 3.1
16 0.34 1.31 0.73 0.11 0.31 0.36 2.7 2.
17 0.50 4.89 0.34 0.28 0.64 0.67 3.0 3.
18 0.80 6.35 0.09 1.88 0.81 0.88 3.1 3.
19 0.83 0 0.98 1.00 3.1 3.1
20 1.01 0 0.99 1.00 3.1 3.1
,
-
,

-

e

n
-

heat conduction is enhanced so little forDTc,DT,DTc0
that DTc cannot be determined by heat-transport measu
ments@30,31#.

The convection patterns appearing at onset were r
whenDTc was relatively small. Because of sidewall forcin
@10,11#, as DT increased from below to aboveDTc , a
concentric-roll~target! pattern appeared first@Fig. 14~a!#. It
became unstable as

e[DT/DTc21 ~36!

increased@11#. After the target was completely destroyed
large e, we reducedDT to just aboveDTc . For relatively
large Prandtl numbers (s*0.4), time-independent straigh
roll patterns were produced by this method at sufficien
smalle @Figs. 14~e! and 14~f!#. For smaller Prandtl numbers
the patterns appeared to be more susceptible to sidewall
ing. In that case straight-roll patterns occupied only part
the cell even at very smalle @Figs. 14~c! and 14~d!#. The
remainder contained curved rolls more or less parallel to
sidewall. The patterns sometimes were slowly time dep
dent because defects generated near sidewall moved thr
the cell. Figures 14~c! and 14~d! were taken from the sam
run at a time interval of 56 min. Whene was increased
slightly, a secondary instability led to time-dependent p
terns with foci and defects@Fig. 14~b!# similar to those found
in pure gases withs.1 @5,12#.

Hexagonal patterns appeared at onset in runs 6, 16,
and 20~Table IV! because theirDTc was relatively large and
the Oberbeck-Boussinesq approximation failed@2#. Figure
14~g! from a He-SF6 mixture is similar to that found in pure
CO2 @93#. Whene was increased slightly, hexagons and ro
could coexist@Fig. 14~h!#. As e was increased a little further
hexagons gave way completely to rolls.

The critical wave numberkc of the rolls at onset was
calculated by Fourier analysis of the shadowgraph imag
~The dimensionless wave number is defined
k[2pd/lw , wherelw is the roll wavelength.! We found
kc,kc053.117 for convection in binary-gas mixtures~Table
V!, wherekc0 is the critical wave number for convection i
single-component fluids.

We calculated the critical Rayleigh numberRc and the
critical wave numberkc based on the linear stability analys

r
r

FIG. 13. Determination ofDTc by the shadowgraph method fo
the experiment in Fig. 12:̂I 2&x as a function ofDT. The data
below DTc are fitted to a horizontal line, while the data abo
DTc are fitted to an inclined line. The intersection of the two lin
givesDTc56.01 °C.
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of Hort, Linz, and Lücke @37# in order to compare the theor
with our experiment, using a computer program provided
Hort and Lücke. The stability analysis takes both the So
and Dufour effects into account. The calculations were d
for the thermophysical properties at the mean tempera
Tmc5Tt1DTc/2 and the mean concentrationXmc at the on-
set of convection.

In Table V we list the experimental resultsr c
e andkc

e for
r c[Rc /Rc05DTc /DTc0

t andkc for several mixtures, as wel
as the corresponding theoretical predictionsr c

t and kc
t . The

mean temperatureTmc and the mean concentrationXmc at
onset were listed already in Table IV. In addition, we gi

FIG. 14. Convection patterns close to onset:~a! and ~b! H2-Xe
at X50.48,P520.7 bars (s50.17, G529), and~a! e50.025 and
~b! e50.046; ~c! and ~d! He-SF6 at X50.38,P515.3 bars
(s50.33, G530), ande50.038, and~d! was taken 56 min after
~c! was imaged; ~e! He-CO2 at X50.52,P530.6 bars and
e50.055 (s50.47, G530); ~f! pure CO2 at P524.92 bars,
e50.043 (s50.91, G530); ~g! and ~h! He-SF6 at
X50.35,P535.85 bars (s50.34, G570), and~g! e50.012 and
~h! e50.021. For clarity, partial images are shown in~g! and ~h!.
y
t
e
re

the dimensionless numberss, C, L, andQ corresponding
to these runs. The good agreement between experiment
theory forr c andkc shows that~i! the thermophysical prop
erties are determined quite accurately and~ii ! the evaluation
of the linear stability analysis@37# is quite accurate. For mos
mixtures,r c

e is a little smaller thanr c
t . This is probably due

to the underestimation of the thermal diffusion ratiokT and
thus ofC at elevated pressures by considering only the s
ond virial coefficient forkT @Eq. ~23!# ~the thermal diffusion
ratio depends strongly on pressure!. This idea is consisten
with the result for the two H2-Xe mixtures~Table V!; the
run at the larger pressure has a larger relative difference
tweenr c

e and r c
t .

B. The Nusselt number

We obtained the Nusselt numbersN from the conduc-
tanceQg5Q2Qw of the gas inside the cell. It is given by

N5
Qg~DT!

Qg,cond~DT!
5
Q~DT!2Qw~DT!

Qg,cond~DT!
, ~37!

where the heat conductance of the gas in the absenc
convection

Qg,cond~DT!5
A

dFl~Tt!10.5DT
dl

dTG ~38!

and the sidewall contribution

Qw~DT!5Q~Tt ,DT!2Qg,cond~DT! ~39!

were determined from the heat-transport measurement
the conduction state@Eq. ~32!# and the calibration of the
sidewall conduction@Eq. ~31!#. Their DT dependence was
extrapolated to the convection state. Figure 15 showsN(e)
for the measurements ofQ(DT) described in Fig. 12. In the
conduction state (e,0) N51, while N.1 in the convec-
tion state.

Near the onset of convection,N can be expanded as

N511S1e1S2e
21•••, ~40!

whereS1 andS2 depend ons, C, Q, andL. The coeffi-
cientS1 is the initial slope ofN(e) at onset and is given by

FIG. 15. Nusselt number as a function ofe for the experiment in
Fig. 12.
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S15 lim
e→01

~N21!/e. ~41!

The coefficientS2 determines howdN/de changes withe
near onset. We determined the slopeS1

e andS2
e by a straight-

line extrapolation at smalle of the experimental data fo
(N21)/e from e.0 to e50. The resultsS1

e and S2
e for

several runs are given in Table IV. The value ofS1
e is sig-

nificantly larger than zero, in contrast toS1&O(1022) for
convection in binary-liquid mixtures@30,31#. The quantity
S2
e is always negative, indicating thatN increases more
slowly ase increases.

For pure fluids (C50), the theoretical valueS1
t (s) for an

infinitely extended pattern of perfect straight rolls was cal
lated exactly by Schlu¨ter, Lortz, and Busse@94#. Although
S1 vanishes ass goes to zero, the dependence ons is weak
for s*0.35 andS1

t .1.42 fors.1. Such a calculation is no
available for the mixtures (C.0). However, employing a
low-order Galerkin approximation for nonslip, impermeab
boundary conditions at the top and bottom of the c
Hollinger and Lücke @38# derived an eight-mode Loren
model that pertains when stationary straight rolls are sta
close to onset. We evaluated the initial slopeS1

HL of N from
this model for the parameters of our experimental ru
However, due to the approximate nature of the mo
@38,95,96#, it gives S1

HL51.718 independent ofs in the
pure-fluid limit rather than the exact value 1.422 fors near
one. Thus we made the empirical but reasonable estim
S1
t .(1.422/1.718)S1

HL . These values are compared withS1
e

in Table IV. They are found to be systematically higher th
S1
e by 0.220.3. This difference between experiment a
theory has long been known for pure fluids@97#. Presumably
it is attributable to the depression of the heat transport in
experimental system by the boundaries, by roll curvatu
and by defects in the pattern. We conclude that at best
differenceS1

e(C50)2S1
e(C) can be compared effectivel

with the corresponding theoretical prediction. Table IV su
gests that the agreement for this difference is quite good

It would seem instructive to examineS1
e andS1

t as a func-
tion of the dimensionless parameters that are relevant to
mixtures. Because, in principle,S1 depends onC, L, s,
andQ, it is not very helpful to plotS1 as a function of any
one of these parameter. We illustrate this in Fig. 16~a!, which
showsS1 as a function ofC. The results show no reasonab
trend and scatter widely. Thus we searched for a param
combination that would serve as an approximate sca
variable in the sense that the experimental and theore
data forS1, when plotted against this variable, will fall clos
to the same smooth curve. As already pointed out above
s dependence ofS1 is weak for pure fluids ands*0.35. The
eight-mode model shows@38# no dependence ofS1 on s.
Thus we neglecteds from the scaling variable. Examinatio
of the eight-mode model’s solutions@38# reveals thatS1 de-
pends only very weakly onQ for the parameters of our ex
periments. Thus, to a good approximationQ may also be
dropped. So finally we need an appropriate combination
C and L. Here we are guided by the analytic result f
~unrealistic! permeable and free~slip! horizontal boundary
conditions@98#
-

l,
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S1
f ~C,L!5

2@11C~11L22!#

11C~11L221L23!
. ~42!

However, for pure fluids,S1
f (C50)52, which is larger than

the result of Schu¨ler et al. for realistic rigid boundaries. Thus
we examine only the differenceS1

e,t(0)2S1
e,t(C,L) as a

function of the scaling variable

dSf522S1
f ~C,L!. ~43!

This is done in Fig. 16~b!, where we used the average e
perimental valueS1

e(0)51.14 from the three pure gases an

FIG. 16. Initial slope of the Nusselt number at onset.~a! S1 as a
function of C and ~b! S1 as a function ofdSf @see Eq.~43!# on
log-log scale. The experimental~theoretical! values are given by
solid ~open! circles.

FIG. 17. Value ofS2
e (S2

t ) as a function ofS1
e (S1

t ). The experi-
mental~theoretical! values are given by solid~open! circles.
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6964 55JUN LIU AND GUENTER AHLERS
the predictionS1
t (0)51.42 of Schlu¨teret al.Both theory and

experiment, to a very good approximation, fall on a sin
curve.

The theoretical value ofS2 was also estimated by usin
the eight-mode model for both pure gases and binary-
mixtures. The correction factor discussed above was
ployed, soS2

t .(1.422/1.718)S2
HL . The value ofS2

t is listed
in Table IV for some experimental runs. In Fig. 17,S2

e and
S2
t are plotted as a function ofS1

e andS1
t , respectively. We

find thatS2
e agrees withS2

t , though both of them are quit
scattered and a smooth curve does not seem to exist. The
a clear trend thatS2 decreases with increasingS1, i.e., ase
increasesdN/de decreases more slowly for smaller initi
slopeS15(dN/de)e501 .

V. DISCUSSION

A. The strength of the Dufour effect

The influence of the Dufour effect (Q.0) depends on
LQC andLQC2 @see Eq.~10!#. In Sec. II B we found that
the values of these parameter combinations are small,
instance, for Ar-CO2 (P522 bars, T525 °C) even
thoughQ itself is not small~Fig. 6!. For He-SF6 under the
same conditions,LQC2 is also small, butLQC can be rela-
tively large ~Fig. 8!. Thus we examine the linear propertie
of this mixture, using stability analysis@37#. In Fig. 18 we
plot r c and kc for the He-SF6 mixture with (Q.0, solid
line! and without (Q50, dashed line! the Dufour effect. The
value ofr c increases very slightly when the Dufour effect
turned off, whilekc decreases by a small amount. The effe

FIG. 18. Comparison of~a! r c and ~b! kc for the onset of con-
vection in a He-SF6 mixture with ~solid curves! and without
~dashed curves! the Dufour effect. The conditionsP522 bars and
T525 °C are the same as those in Fig. 8.
e

as
-

e is

or

t

is at most of the same size as typical experimental errors
much smaller than the Soret effect. The other four mixtu
~Ne-Ar, He-CO2, He-Xe, and H2-Xe! show a similar or
weaker Dufour effect.

B. Summary

In this paper we presented the results of an extensive
perimental investigation of Rayleigh-Be´nard convection in
binary-gas mixtures. A complete set of thermodynamic a
transport properties was accurately determined for
binary-gas mixtures~He-CO2, He-SF6, He-Xe, Ne-Ar,
Ar-CO2, and H2-Xe! by a combination of fitting data in the
literature, doing molecular-theory calculations, and meas
ing the thermal conductivity ourselves. All six mixtures ha
positive separation ratiosC.0 ~Fig. 4!. The Lewis number
L is of order one~Fig. 5!. An important feature of binary-ga
mixtures is that their Prandtl number can be lower than t
of the two pure components~Fig. 7!. We discussed the
physical reason and showed that the minimum Prandtl n
ber that can be reached is about 0.16. Such low Prandtl n
bers may be of technological importance in design engine
ing involving heating or refrigeration systems@50,90#.

Both the heat-transport~Nusselt numberN) measure-
ments and the shadowgraph imaging gave the same cri
temperature differenceDTc for the onset of convection in
binary-gas mixtures. The measuredr c5Rc /Rc0 and kc
~Table V! agree well with the prediction of linear stabilit
analysis@37#. In contrast to convection in binary-liquid mix
tures havingC.0, N increases significantly in binary-ga
mixtures as soon asRc is exceeded and convection star
Consistent with predictions@35# for this parameter range, th
convection patterns appearing near onset~Fig. 14! are rolls
~hexagons appear at onset for relatively largeDTc). So the
convection in binary-gas mixtures behaves qualitatively l
that in pure fluids, except thatRc,Rc051708 and
kc,kc053.117. The initial slope of the Nusselt numb
(dN/de)e501 at onset was compared with that predicted
an eight-mode Galerkin truncation@38,96#. Good agreemen
was found for the variation of this slope withC andL ~Fig.
16!. Based on the gas-mixture properties determined in
paper, we found that the Dufour effect~the reciprocal pro-
cess of the Soret effect! is very weak in binary-gas convec
tion ~Fig. 18!.

In view of the great variety of nonlinear phenome
found in binary-liquid mixtures withC,0 @29#, it would be
interesting to study RBC in binary-gas mixtures with neg
tive separation ratios. Gas mixtures can have lower Pra
numbers, larger Lewis numbers, larger aspect ratios,
faster time scales than liquid mixtures. Unfortunately, it a
pears that the separation ratio is always positive for relativ
low pressures. A negativeC can perhaps be found in th
critical region@99# and in very dense gases@100#. However,
it is hard to obtain a complete set of thermophysical prop
ties under those conditions.

Although so far binary-gas mixtures have been limited
C.0, they provide unique opportunities for the explorati
of various nonlinear phenomena in RBC at Prandtl numb
between 0.16 and 1 and for Lewis numbers of order one.
important example is high-Rayleigh-number turbulent co
vection @7#, where the nature of the boundary layers sho
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change asC, s, andL are varied. Another is the quantita
tive study of the effect ofs and L on various secondary
instabilities and spatiotemporal chaos. Using gas mixtu
we found recently that the onset of spiral-defect chaos
pends significantly on the Prandtl number@25#. A detailed
study of complex spatiotemporal behavior of convection p
terns will be presented in another paper of this series@51#.
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APPENDIX

Here we give major references for each gas and mixt
The actual methods used to obtain the thermophysical p
erties are briefly described. Since a large number of theo
ical and fitting equations are involved, we do not reprodu
them here.

1. Pure gases

a. CO2

A precise high-order expansion for the equation of stat
given by Vukalovich and Altunin@55#. Fits of suitable equa-
tions to data forh andl are summarized by de Bruynet al.
@8#. The specific heatCp is tabulated in Ref.@55#.

b. He

The equation of state is given by Tsederberget al. @52# up
to the third virial coefficient. These authors also giveCp and
fits to h and l. Some of their fits were cross-checked
experimental data from Ref.@101#.

c. Ne and Ar

The second virial-coefficientB, zero-densityh, and zero-
densityl were calculated from kinetic theory@59#. The den-
sity dependences ofh andl were obtained from fits to the
data in Ref.@53#. The heat capacityCp is based on the dat
in Ref. @53#. We cross-checked the various estimates us
the experimental data in Refs.@102,103#.

d. Xe

All fits for B, h, l, andCp are based on the data in Re
@53#. Some of the fitting equations are given in that book. W
cross-checked some results using the experimental data
Ref. @103#.

e. N2

Our estimate of the second virial-coefficientB is based on
a fit to the data in Ref.@60#. The estimates of the zero
densityh andl are fits to the data in Ref.@60# and in Ref.
@104#, respectively. Their density dependence was obtai
s,
e-

t-

t

t-

e.
p-
t-
e

is

g

e
m

d

from a fit to the data in Ref.@105# and in Ref.@106#, respec-
tively. For the heat capacityCp we used a fit to the data in
Ref. @54#.

f. H 2 (normal hydrogen)

The second virial-coefficientB was obtained from a fit to
the data in Refs.@63,107#. The zero-densityh andl are from
fits to the data in Ref.@83#. The density dependence ofh is
from a fit to the data of Ref.@105#, while the density depen
dence ofl is from Ref.@108#. The heat capacityCp is a fit to
the data from Ref.@54#.

g. SF6

The equation of state is given in Ref.@109# up to the
eighth virial coefficient. Equations for the thermal condu
tivity l are given in Ref.@110# and the equations forh are
given in Ref. @111#. The heat capacityCp at atmospheric
pressure is a fit to the data in Ref.@104# and its pressure
dependence is a fit to the data in Ref.@112#.

2. Binary-gas mixtures

a. Ne-Ar

The second virial coefficientB and zero-density
h, l, D, and kT were calculated from statistical
mechanical theory@59#. We took the density dependence
h from that of the two pure components@53#, while the
density dependence ofl was obtained by fitting to the dat
in Refs. @53,85#. No data are available for the pressure d
pendence ofD andkT , so the models discussed in Sec. II A
were used to estimate their pressure dependence. We c
checked some of the results using the data in R
@81,85,89,102#.

b. He-Xe

The second virial coefficientB and zero-density
h, l, D, andkT were calculated by statistical-mechanic
theory @59#. The density dependence ofh and l was ob-
tained from the two pure components@53,103#. No data are
available for the pressure dependence ofD and kT , so the
models discussed in Sec. II A3 were used to estimate t
pressure dependence. Some of these results were c
checked by the data in Refs.@78,113–115#.

c. He-CO2

An equation of state containing up to the fifth virial coe
ficient was used. The second virial coefficientB was fitted to
the data in Refs.@64,116#. The third virial coefficientC was
fitted to the data at 0 °C@116# using the formula
C5CheXhe1CcXc

a . Here a is the fitting parameter. The
fourth and fifth virial coefficients were estimated from that
pure CO2 neglecting helium, i.e.,D5DcXc

4 andE5EcXc
5 .

For the zero-densityh and l, Eq. ~21! was fitted to the
experimental data in Refs.@79,84#. Their density dependenc
was obtained from a fit to the data in Refs.@79,84#. The
zero-densityD and kT were calculated from kinetic theor
@61#. The pressure dependence ofkT is given in Ref.@76# up
to 5 atm, while the pressure dependence ofD was estimated
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from the model discussed in Sec. II A3. The results forD
andkT were cross-checked by the data in Refs.@76,87,117–
119#.

d. Ar-CO2

An equation of state containing terms up to the fifth vir
coefficient was used. The second virial coefficientB was
fitted to the experimental data in Ref.@66#. The third coeffi-
cient was based on pure Ar@120# and CO2@55#. The fourth
and fifth coefficients were based on those of pure CO2 alone.
We fitted Eq.~21! for the zero-densityh and l to the ex-
perimental data in Refs.@121,122# and in Ref.@84#, respec-
tively. The pressure dependence ofh was taken from that of
the pure components, while the pressure dependencel
was fitted to the data from Ref.@84#. The zero-densityD and
kT were calculated by kinetic theory@61#. The pressure de
pendence ofkT was estimated from the result on p. 617
Ref. @32#. The pressure dependence ofD was evaluated from
the model discussed in Sec. II A3.

e. He-SF6

We used an equation of state containing terms up to
fourth virial coefficient. The second virial coefficientB was
calculated from kinetic theory except thatB12 was corrected
using the data from Refs.@64,65#. The third virial coefficient
a

.
ts

n
b

.

ff
l

e

was based on the two pure components, while the fou
virial coefficient was estimated from pure SF6. The zero-
densityh was calculated from kinetic theory@61#, while the
zero-densityl was estimated by the approximate meth
due to Monchicket al. ~see Sec. II A2!. The pressure depen
dence ofh andl was taken from that of the two pure gase
The zero-densityD andkT were also calculated from kineti
theory @61#. However, we correctedkT based on the experi
mental data in Refs.@76,86,87# since the calculated value
were systematically smaller than the experimental data.
pressure dependence ofD is given up to 9 atm at 300 K by
Ref. @75#, while the pressure dependence ofkT is given by
Ref. @76# up to 5 atm.

f. H 2-Xe

The second virial coefficient was determined from Re
@53,63,107#. The zero-densityh was calculated from kinetic
theory based on a Lennard-Jones potential@68#. The zero-
densityl was estimated by the method of Monchicket al.
The density dependence ofh andl was based on that of th
pure gases. The zero-densityD andkT were calculated from
kinetic theory@68#. Their density dependence was estimat
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@94# A. Schlüter, D. Lortz, and F. Busse, J. Fluid Mech.23, 129
~1965!.
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@102# J. Kestin, Ö. Korfall, J. V. Sengers, and B. Kamgar-Pars
Physica A106, 415 ~1981!.

@103# J. Kestin, R. Paul, A. A. Clifford, and W. A. Wakeham
Physica A100, 349 ~1980!.

@104# F. J. Uribe, E. A. Mason, and J. Kestin, J. Phys. Chem. R
Data19, 1123~1990!.

@105# J. A. Gracki, G. P. Flynn, and J. Ross, J. Chem. Phys.51,
3856 ~1969!.

@106# A. A. Clifford, J. Kestin, and W. A. Wakeham, Physica A97,
287 ~1979!.

@107# R. Artym and M. Kliem, Ber. Bunsenges. Phys. Chem.95,
1274 ~1991!.

@108# A. A. Clifford, P. Gary, A. I. Johns, A. C. Scott, and J. T. R
Watson, J. Chem. Soc. Faraday Trans. I77, 2679~1981!.

@109# A. Oda, M. Uematsu, and K. Watanabe, Bull. JSME26, 1590
~1983!.

@110# J. Kestin and N. Imaishi, Int. J. Thermophys.6, 107 ~1985!.
@111# J. H. B. Hoogland, H. R. Van den Berg, and N. J. Trapp

niers, Physica A134, 169 ~1985!.
@112# W. Braker and A. L. Mossman,The Matheson Unabridged

Gas Data Book: A Compilation of Physical and Thermod
namic Properties of Gases~Matheson Gas Products, East R
therford, NJ, 1974!.

@113# J. Kestin, H. E. Khalifa, and W. A. Wakeham, Physica A90,
215 ~1978!.

@114# J. M. Gandhi and S. C. Saxena, J. Chem. Eng. Data13, 357
~1968!; Mol. Phys.12, 57 ~1967!.

@115# W . L. Taylor, J. Chem. Phys.72, 4973~1980!.
@116# V. K. Bammert and R. Klein, Atomkernenergie24, 150

~1974!.
@117# J. M. Symons, M. L. Martin, and P. J. Dunlop, J. Chem. S

Faraday Trans. I75, 621 ~1979!.
@118# J. N. Holsen and M. R. Strunk, I&EC Fundam.3, 143~1964!.
@119# R. D. Trengove, K. R. Harris, H. L. Robjohns, and P.

Dunlop, Physica A131, 506 ~1985!.
@120# M. Orentlicher and J. M. Prausnitz, Can. J. Chem.45, 373

~1970!.
@121# J. Kestin and S. T. Ro, Ber. Bunsenges. Phys. Chem.80, 619

~1976!.
@122# A. Hobley, G. P. Matthews, and A. Townsend, Int. J. The

mophys.10, 1165~1989!.
@123# P. J. Dunlop, Physica A145, 597 ~1987!.


