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We present an experimental investigation of RayleighdBd convection in binary-gas mixtures. In order to
interpret the results quantitatively, we determined the necessary thermodynamic and transport properties for six
mixtures(He-CO,, He-SFK;, He-Xe, Ne-Ar, Ar-CG, and H,-Xe) by a combination of data from the literature,
molecular-theory calculations, and thermal-conductivity measurements. All six mixtures have positive separa-
tion ratiosW. The Lewis numbeL (the ratio of the mass to the thermal diffusivitg of O(1), in contrast to
liquid mixtures whereC=0O(10 ). An important feature of the gas mixtures is that their Prandtl nurtther
ratio of the kinematic viscosity to the thermal diffusivityan be lower than those of the two pure components.

We discuss the physical reason for this and show that the minimum Prandtl number reached by using binary-
gas mixtures is about 0.16. The critical temperature differexitgfor the onset of convection is determined

from measurements of the Nusselt numBérthe effective thermal conductivityand from the contrast of
shadowgraph images as a functiorAof. The results agree well with the prediction of linear stability analysis.

In contrast to convection in binary-liquid mixtures with>0, A for the gas mixtures increases significantly

with e=AT/AT.—1 as soon as the convection starts at the Soret onset and is qualitatively similar to the
Nusselt number of pure fluids. However, the critical Rayleigh nuriqés lower than the valu®.,=1708 of

pure fluids. The pattern at onset in the gas mixtures initially consists of parallel straight rolls, in contrast to
binary-liquid mixtures where the pattern consists of squares. Based on the gas-mixture properties, we find that
the Dufour effecithe reciprocal process of the Soret effdstrelatively weak. The slopgN/de of A/ at onset

is found to be consistent with that predicted by an eight-mode Galerkin truncg®id®63-651X97)04206-2

PACS numbe(s): 47.20.Bp, 47.27.Te, 51.26d, 51.30+i

. INTRODUCTION a=—(1lp)(dplIT)p )

A quiescent horizontal fluid layer heated from below be-is the isobaric thermal expansion coefficiepti¢ the density
comes unstable and undergoes a transition to buoyancgnd P the pressune g the acceleration of gravityd the
driven convection, namely, Rayleigh-Bard convection fluid-layer thicknessx the thermal diffusivity, andv the
(RBC), when the temperature differencel across it ex- kinematic viscosity. AR increases from zero, the destabi-
ceeds a critical valuAT,. This system has long been used lizing density gradienf{or buoyancy forcgincreases. Con-
to investigate many fundamental and practical problemsection occurs whelR exceeds a critical valuB; (AT ex-
[1-8]. Particularly, it has become a paradigm in the study ofceeds AT.). For a single-component fluid, the critical
complex spatiotemporal behavior in spatially extended nonRayleigh number (corresponding to AT=AT.) s
linear nonequilibrium systeni$]. This is so for two reasons. R.,=1708, independent of material properties, and the con-
On the one hand, RBC lends itself to well controlled, quan-vection just above onset consists of stationary rolls. When
titative experiment$5,8]. On the other hand, the equations R increases further abo\R,., various flow patterns and time
of motion of the system are well knowithe Navier-Stokes dependences evoly6,9—17, and turbulence appears at very
equations and associated boundary condiji@msl permit a  largeR [7].
close connection between theory and experiment, which has The nonlinear behavior of convection aboRg depends
led to detailed tests of theoretical concef@s,6]. There has on the Prandtl number
been a large amount of experimental work on RBC in single-
component liquids and gases and in binary-liquid mixtures. o=vlk (©)

In this paper, we report RBC experimentsimary-gasmix-
tures and show that they open an alternative parameter rangé Well as onR. Although o does not affect the onset of

with different opportunities in the study of RBC. convection, it has important effects on secondary instabilities
The primary control parameter for RBC is the Rayleighof the convection-roll patterns. For the idealized case of in-
number finitely extended parallel straight rolls, Busse and collabora-

tors [2,13—19 have determined the main features of these
agd®AT instabilities as well as their boundaries as a functiorR(_)f
R= ——, ) o, and the roll wave numbeét. These predictions describe
kv fairly well also the case of convection in large but finite
samples wherr is large. However, for lows experiments
a dimensionless measure of the temperature difference acrosave revealed complex spatiotemporal behavid® alightly
the fluid layer. Here aboveR; [5,12,16—18 where straight rolls are predicted to
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be stable in the infinite system. To a large extent this time In binary mixtures, the dynamics of the concentration
dependence of the patterns is associated with roll curvatureariable is associated with an independent time scale gov-
induced by the sidewalls of the cell, which leads to large-erned by the concentration diffusivit®. Thus the Lewis
scale flows. These flows in turn create a wave-number disaumber
tribution that, for smallo, overlaps the stability boundaries
of the infinite systen}5,12). L=D/«k (7)
Another parameter relevant to experiments is the lateral
extent of a convection cell, as described by the aspect ratigs an important parameter that measures the ratio of the
thermal-diffusion time to the mass-diffusion time. For liquid
I'=r/d, (4 mixtures,£ is small[ O(10 2)]. In that case it is possible for
the concentration to temporally lag behind the thermal gra-
dient. When¥ <0, this can lead to oscillations that are re-
sponsible for the existence of traveling waves and other in-
teresting phenomer{29]. On the other hand, fo¥ >0, the
convection is stationary and the pattern that forms for small
L is one of squaref30,31,39. Mass diffusion carries little
eat for smallC and thus for# >0 the heat transport is not
significantly enhanced by the convection fBE<R<R.

wherer is the radius for a cylindrical cell. When the system
is small "=3), RBC can exhibit temporal cha6,19,2Q
asR increases fronR;, and the spatial dependence is dy-
namically unimportant. For larg€, the spatial degrees of
freedom play an important role in the complex evolution of
convection patterns, resulting in spatiotemporal chao
[5,17,18,21-24 Recently it was shown that the onset of : _ (
spiral-defect chaos, a spatiotemporal chaos occurring onl 0,31, where the Soret mechanism dominates. In binary-

for I'>1 and lowo, depends significantly on the aspect ratio as mixture_s, _h_oweven{;:O(l) and the heat transport s
[17,18,23,2% enhanced significantly in the ranfg<R<R;q, as we will

show in this paper. The pattern immediately ab®&gethen
gonsists of rolls like those in pure fluids.

The coupling of temperature and concentration in binary
Smixtures also gives rise to the Dufour effect, which consists
of temperature gradients induced by concentration gradients.
It is the reciprocal process of the Soret effect in Onsager’s

The nature of Rayleigh-Berd convection in pure fluids
is determined by the above three dimensionless numbe
when the Oberbeck-Boussinesq approximafia6—2g ap-
plies. In this approximation it is assumed that the variation
of all fluid properties with temperatur@xcept for the den-
sity in the buoyancy forgecan be neglected. For most of the ; : -
work reported in this paper this approximation is very good.l'near reciprocal relat|_on$32,36,32. Re_cently, Lieke and

For binary mixtures, additional parameters are required t&©-Workersi37,3§ carried out a theoretical study of the role

describe the nature of the convecting state because of trgé the Dufourde?fectdin RBC. A dimensionless Dufour num-
coupling between concentration and temperature fields. Thieer[37] was defined as

coupling results in new phenomena that do not occur in pure )

i i i i ; ime. Ta | du
fluids, including traveling waves, localized pulses, time Q (_
dependent envelopes of the convection rolls, and square pat- cp,82 Clo+
terns [29-31. In binary mixtures, temperature gradients
change the concentration field because of thermal diffusiog\,here w(P,T,C) is the chemical-potential difference per
[32,33. This so-called Soret effect is characterized in RBC it masgsee Eq(24) below] andc, is the isobaric specific

by the separation ratio heat per unit mass. Note th@k is a purely thermodynamic
quantity. The coupling strength of the Dufour effect depends

Bkt B on combinations of), £, and¥ [see Eq.(10) below]. In

o

®

?__;C(l_C)ST' 5 liquid mixtures, £ is small and thus the Dufour effect is
negligible [36,37. On the other hand, in gas mixtures,
L=0(1) and the Dufour effect may not necessarily be ig-
nored. When the effect is strong, it can significantly change
the bifurcation topology and the existence regimes of station-
ary and traveling-wave convecti¢87,38.

In order to understand the relevance of the Dufour effect
H'lore guantitatively, we examine the various terms in the
governing equation§2,37,39 for RBC in binary mixtures.
Scaling lengths byd, time by d?«, temperature by
kvl agd®, concentration by v/ Bgd®, andP/p by «?/d?, the
B=—(1lp)(dplIC)p 1. (6)  Oberbeck-Boussinesq approximation lead$3)|

V=-

where B is the solutal expansion coefficietd; the thermal
diffusion ratio[34], T the temperatureC the mass concen-
tration of the heavier componefgee Eq.(14) below], and
S;=k1/C(1—-C)T the Soret coefficient. The quantiky is
defined so that the heavier component moves to the col
(hot) region whenk;>0 (k;<0). The thermal expansion
coefficienta [Eq. (2)] is computed at consta@ and

When ¥ <0, the induced concentration gradient stabilizes
the conduction state because the heavy component moves to
the hot region and retards the buoyancy. Thus the critical
Rayleigh number is elevated, i.€R.>R.,. On the other
hand, whertl >0, the induced concentration gradient is de-
stabilizing the conduction state and the critical Rayleigh )
number is reduced, i.eR.<Rg. (0y+Vv-V)c=RW¥v-z+ LV?(c— V¥ 0), (12)

1 “
;(0t+V-V)V=—VH+(0+C)Z+V2V, 9

(9,+V-V)6=Rv-z+ (1+ LQ¥?) V26— LQ¥V?c, (10)
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TABLE I. Primary thermophysical properties of pure gases and binary-gas mixtures. The quantity
denotes the mole fraction of the heavier component in a mixture.

Property Pure gas Binary-gas mixture
density p(P,T) p(P,T,X)
shear viscosity n(P,T) n(P,T,X)
thermal conductivity NP, T) NP, T,X)
isobaric specific hedjper mole Cp(P,T) Cpo(P,T,X)
mass diffusivity D(P,T,X)
thermal diffusion ratio kt(P,T,X)
chemical-potential differenc® n(P,T,X)

aSee Eq.24) for the definition.

where 6(x,y,z), c(x,y,z), andp(x,y,z) are the deviations binary-gas mixtures and pure gases and by changing their
of T, C, andP from their values in the conduction state. pressures and concentrations. Some results for the effect of
Herex andy are the horizontal axeg, is the vertical axis the Prandtl number on spiral-defect chaos have been reported
opposite the direction of gravity, and is the unit vector N Ref.[25] and we plan to present more detailed results in
along z. The Dufour effect changes the temperature-fielg@nother papefS1]. . _
equation[Eq. (10)] both “diagonally” via LQW2V26 and The rest of this paper is organized as follows. In Sec. I
“off diagonally” via — £QW VZ2c. Thus a significant Dufour W€ d_escrlbe the_general method used to _obtam the thermo-
effect should occur when the parameter combination®hysical properties of pure gases and binary-gas mixtures
£QW? andlor LQW are sufficiently large. Although Linz required in the study of RBQ. Wg also epra|_n why Pr:_;mdtl
[40,41) and Hortet al.[37] roughly estimated the parameters "UMbers can be lowered in binary-gas mixtures with a
for binary-gas mixtures, there has been no direct assessmetifPle model. Section Il presents the experimental setup
of the Dufour effect for anyreal gas mixtures because a and measurer_nent methods. Experlmental re_sults f_or the on-
complete set of thermophysical properties is rarely docuSet of convection are prgsented in Sec. IV. Finally, in Sec. V
mented. In this paper, we determine all the necessary prof‘e dlsc_uss .the relative importance of the Soret and Dufour
erties for several binary-gas mixtures with good accuracy. IEff€Cts in binary-gas mixtures and give a summary of our
turns out that the role of the Dufour effect in all of these is WOrk-
very minor. The reason for this is thdt tends to be small
whenQ is large. We test the predictions of lingf@7] and Il. THERMOPHYSICAL PROPERTIES
weakly nonlinea38] theory based on the above equations OF BINARY-GAS MIXTURES
by measuring the critical Rayleigh numbRg, the critical
wave numbek., and the Nusselt numbev near onset.
One can see from Eq$9)—(11) that the Prandtl number
o determines the relative weight of the nonlinear term
v-Vv, v-V§, andv- Vc. The stability and evolution of con-

Under ideal circumstances the physical properties of
gases and their mixtures would be based on experimental
determinations. Unfortunately, the amount of experimental
Sdata required for our needs is formidable and we must resort
to less satisfactory approaches. Whenever possible, we used
rgxperimental measurements. When these were inadequate,
we employed theoretical estimates based on kinetic theory
and empirical interpolation formulas. This approach does not
lend itself to a systematic presentation because the details
vary from case to case. Thus, in this section we attempt to
resent the general methods that we have used. The details

ill differ for different mixtures, and more specific informa-
tion including references to the literature for each of them is

dominant. The ternv- Vv can yield a vertical-vorticity field
[5,42] giving rise to large-scale horizontal flows, whose
magnitude ignverselyproportional too. It has been shown
theoretically [42—-45 and experimentall\{46,47) that the
large-scale flows are responsible for much of the comple
spatiotemporal behavior of convection patterns observed
low Prandtl number$5,12,16—18 Thus it is of great inter-
est to investigate the role @f quantitatively especially for presented in the Appendix.

o=1. However, as a material property,cannot be readily " 14 siudy RBC in gases quantitatively, we need to know
adjusted in a given experiment. Prandtl numbers of purg,q “primary” thermophysical properties listed in Table I.

gases generally are larger than the value 2/3 derived froyher thermodynamic and transport coefficients derivable
kinetic theory for rigid-sphere molecul48]. Liquid metals 0 them are the kinematic viscosity= 7/p, the thermal

haveo=0.03, but we know of no classical pure fAlUit®9] ity sjvity x=\lpc,, the thermal and solutal expansion co-

with 0.03<0=0.67. Employing simplified models, Gia- efficients given by Eqs2) and(6), and the specific heat per
cobbe[50] estimated the Prandtl number for binary noble- i massc,=C,/M. Here

gas mixtures involving helium and found thatcan reach
about 0.2 for a helium-xenon mixture. In the present paper, M=M,X+M;(1—X) (12)

we use a more accurate method, based on a combination of

statistical-mechanical theory and experimental data from thés the molar mass of the mixture al,; and M, are the
literature and our experiments, to show thaas low as 0.16 molar masses of the lighter and heavier pure component,
can be achieved by a hydrogen-xenon mixture. In our experirespectively. The mole fractioK of the heavier component
ments we cover the range 0&6-<1.00 by using different is given by
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X=N,/(N;+N,), (13 B(T,X)=(1—X)2B(T)+2X(1—X)B1AT)+ X?B,(T),
18
whereN; andN, are the number of moles of the lighter and (19
heavier component, respectively. In the hydrodynamic equawvhereB; and B, are the second virial coefficients of com-
tions the mass concentration often is used and it is given bgonents 1 and 2, respectively, adg, the secondnteraction
virial coefficient associated with the unlike pair interaction
C=NzM2/(N1M1+NzMp). (14 between components 1 and 2. The coefficiBas(T) has
been measured for many mixturgg2—-6¢ and can be cal-

The relationship betweeX andC is easily derived to be culated by statistical-mechanical theory for some of them

C=XM,/M (15)  [59,61. The third virial coefficient is sometimes necessary to
improve the accuracy of mixture densities, but the third un-
and the derivativelC/d X is given by like interaction virial coefficients are seldom available. So

the third virial coefficients of pure gases were used to evalu-
dC/dX=MMy(N;+N3)?/(N;M;+N,Mp)%  (16)  ateC(T,X) approximately.

er wrote a s.eries of_programs to calculate the thermo- 2. Viscosity, thermal conductivity, and heat capacity
physical properties of eight pure gaséde, Ne, Ar, Xe, ) ,
H,, N,, CO,, and SR) and six binary-gas mixture@le-Xe, For both physical reasons and practical purposes,

He-CO,, He-SF;, Ne-Ar, Ar-CO,, and H,-Xe) as a function  7(P,T,X) andi(p,T,X) are expressed as a sum of two in-

of temperature and pressure. Using the same procedure, it §¢Pendent contributior{82,67. Thus, writing¥ (p,T,X) for

possible to determine thermophysical properties for many0th properties we have

other binary-gas mixtures, especially noble-gas mixtures.

The properties calculated in this work are applicable to the Y(p,T,X)=Yo(T,X)+AY(p,T,X). (19

range 0°—60 °C and 1-50 bars, except that the partial pres- i o

sure has to be lower than 22 bars forg#d 30 bars for Xe. 1€€Yo(T,X)=Y(0,T,X) is the contribution to the transport
For the eight pure gases, their properties have been wdiroperty in the limit of zero density, where only two-body

summarized in the literature as functions of pressure angiolecular interactions occur. The second tek¥i(p, T, X)
temperature(e.qg., see Refs52—59). On the other hand represents the contribution of all other effects to the transport

despite voluminous work56,57), the thermophysical prop- property at elevated densities, such as many-body collisions

erties are documented incompletely for the mixtures. Forty@d collisional transfer. It can be expanded as a polynomial

nately, considerable success has been achieved in calculatiﬁbp'
the equation of state and the transport properties of dilute _ 5 3
gases and gas mixtures from statistical mechanics, using 2Y(P. T.X)=Yo(T,X)p+ Yo(T,X)p"+ Y5(T.X)p"+ - - -

combination of the principle of corresponding states with (20

intermolecular potentials based on a limited, well-chosen se[.he expansior20) is usually kept up to the second or third

of accurate measuremenf{82,58—-61. Such calculations . )
: term. For the relatively narrow temperature range used in our
have reproduced the properties of some pure gases and gas_ . .
. . experiment, Y{(T,X), Y,(T,X), etc., are sometimes as-
mixtures with an accuracy comparable to measurements. Be- . )
. . o ...~ sumed to be temperature independent, depending on the data
cause the theoretical equations and empirical collision mteévailable to us. Similarly, the heat capacly(p.T,X) can
grals that we used are complicated and have been doc%ﬂso be ex reése d as %’(a_g) [32] wheF)re:tEhBﬁe’)]‘irs,t term is
mented in Refs32,59-61, we do not reproduce them here. then due tg the molecule’s tranélational rotational, and vi-
In this work, while the pure gas properties were mainly Ob_brational degrees of freedom and the se’cond term ’stands for
tained by fitting literature data, the mixture properties Ve e contribu%ion of all intermolecular interactions. For the
determined by a combination of fitting data in the literature, '

doing molecular theory calculations, and measuring the ther%,:;z ?r?tsrfjlil'::ree?tljrr]eo;l: deé(gsi?n::?a\?wt’b); ' fii‘tr;%(ig éreg)tz;kr)] lé
mal conductivity ourselves. y G

(20).

For the binary-gas mixtures, the calculationspindX\ is
much more complicated. Different methods have to be cho-
1. Density sen, depending on the available data and theoretical results.
For the noble-gas mixtures Ne-Ar and He-Xe, the zero-
density viscosityp, and the zero-density thermal conductiv-
ity Ao can be calculated from kinetic theory and empirical

Pu/RT=1+B(T,X)/v+C(T,X)/v2+D(T,X)/v3+- - -, integrals given by Kestiet al.[59] with an accuracy of 1%

(17)  or so. For the mixtures involving polyatomic molecules, al-
though#, can be calculated from kinetic thedr§1,68, the

where v is the molar volume,R the gas constant, and thermal conductivity cannot be treated well by kinetic theory
B(T,X), C(T,X), ... the second, third, etc., virial coeffi- due to the internal degrees of freedom and anisotropic pair
cients. For our eight pure gases, the equations of state hay®tentials. When there are enough reliable experimental data,
been summarized in the literature, some up to the eighth auch as for He-C@ and Ar-CO,, both », and\y were ob-
ninth virial coefficient. For a binary-gas mixture, the secondtained by fitting to the data the empirical expression
virial coefficient is [56,69,7Q

A. General procedure

The densityp(P,T,X) is calculated from the equation of
state
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Y Y 25
_ 01 + 02 ' (21)

Yo

where Y, and Y, are the zero-density values of the pure 2

components and\;, and A,; are adjustable parameters. In
the case of H-Xe and He-Sk, we did not find enough data
to apply Eq.(21). Thus the kinetic-theory equations and em-
pirical integrals documented in R¢b61] were used to calcu-
late 5, for He-SF;, while the equations and integrals based 1
on the Lennard-Jones potential summarized in &S] had 0 0.2 0.4 0.6 0.8 1
to be employed to determing, for H,-Xe. An approximate X

method due to Monchickt al.[71,72, which was summa-
rized later in Ref[73], was used to estimate, for H,-Xe

and He-Sk. This method relates the mixture thermal con-
ductivity to the thermal conductivity of its components and
other properties of the system such as the viscosity and dif-
fusion constants, which can be predicted accurately by ki-
netic theory. To get a good estimation)qf, these properties
were obtained from experimental data whenever possible.
Because the method may have relatively large errors, the
final result ofA was checked by our own measurements. We
show later that the approximate method can predicfuite
accurately for He-SE, but gives a result slightly smaller
than the measured one for,Ke. In order to obtain the
pressure dependence Of the mlxturmnd )\, we f|tted Eq FIG. 1. Shear ViSCOSity] .aS a fur?CtiOh of the mole fractiod of .
(20) to experimental data whenever possible. When no datthe heavy component in binary mixtures. The symbols are experi-
are available, we added the contributions of the two purénentgl dqta and the curves are th_e results calculated frqm the fits
components  together, i.e., AY(p,T,X)=AY;(py,T) used in this work at the correspondiRgandT. (a) The open circles

+AY,(p,,T), wherep,; andp, are the densities of two com- 78] are for H,-Xe atP=1.0 bar ano_IT_:23 C, the sold circle
ponents in the mixture ang;+ p,=p. Since the pressure [53] is for pure Xe at the same condition, and the squérésare

d d dx i i i for He-CO, at P=23.3 bars and’=30 °C. (b) The triangleq80]
ependence ofy an - IS .usua y small In our pressure .o He-Sk at P=1.0 bar andT =25 °C and the diamond$1]
range, such an approximation should work well. are for Ne-Ar atP=1.0 bar andl =25 °C.

Because the specific heat of a gas is mainly contributed by
the molecule’s translational, rotational, a_md_wbratlonal d_e-rized in Refs.[74,75 and in Refs.[76.77 to calculate
grees of freedom, we assumed the contribution of unlike ing (T.X) andB,_(T.X), respectively, from the second virial
teractions of components 1 and 2 to be negligible. Hence we " '’ kL T2 R), TESP Y,

calculated the mixture heat capacity by adding the contribucoefficients of pure gases and mixtures. Dunlop and his col-
tions of the two components togetH&0,70: laboratord 74—76 have tested these methods experimentally

for several mixtures at relatively low pressufep to 5 atm
Cp(P,T,X)=(1-X)Cp1(P1,T)+XCpp(P,,T), (220  for ky and 9 atm forPD). However, the second virial coef-
_ ficient B, (X,T) may not be sufficient because of the strong
whereP,; and P, are the partial pressures of components 1pressure dependence lof .
and 2, respectively.

15

N (10 Nsm?)

(105N sm?)

Finally, we point out that the value df; depends on
which concentration one uses, the mole fractiror the
mass concentratio®. The original definition ofk; [34] is

The mass diffusivityD and the zero-density thermal dif- based on the mole fraction; however, the mass concentration
fusion ratioky, are given by kinetic theor{32,59,61. The is used in the governing equations and the separation ratio.
theory predicts that the produétD is constant for dilute The two values ok are converted from one to another by
gases. Hence, in studying the pressure dependeridgthle  ky a5 (dC/dX)Kr mole, Where @C/dX) is given by Eq.
productPD should be studied. To first order, the pressure(16).
dependence of botRD andk; can be written a§74—77

3. Diffusion constant and thermal diffusion ratio

4. Chemical potential
Z(P, T,X)=Zy(T,X)[1+Bz(X,T)P], (23 . ) . .

The chemical-potential difference per unit mass of the
whereZ(P,T,X) stands for bottPD andky, andZo(T,X)  mixture u(P,T,C) is given by[39]
for their zero-pressure values. The second “virial coeffi-
cient” B,(T,X) is a function of concentration and tempera- m=po/Mo— w1 /M, (29
ture. Unfortunately, there are only limited data on the pres-
sure dependence & andPD. We used the measurements wherey, andu, are the chemical potentials per mole of the
of By (T,X) for He-CO, and He-Sk by Trengoveet al.up  single components. Assuming the mixtures are ideal gases
to 5 atm[76] and employed approximate methods summa{37], we have
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OTo

0.15

v 0.1 FIG. 3. Reduced low-density thermal-diffusion ratig, as a

'-‘E ’ function of the mole fractiolX. The symbols are experimental data,

=z and the curves are calculated from the fits used in this work at the

= 0.05 correspondingT. Open[86] and solid[76] squares, He-Sf at
T=26.85°C; open[87] and solid [76] circles, He-CQ at
T=26.85 °C; triangles[88], H,-Xe at T=26.85 °C; diamonds

0 [89], Ne-Ar atT=21.85 °C.

viscosity 7, the thermal conductivityh, and thereduced
FIG. 2. Thermal conductivit\ as a function of the mole frac- low-density thermal diffusion rati@rro= Ko moje/X(1— X)
tion X. The symbols are experimental data and the curves are thgs fnctions ofX. To compare with experihental data. the
results calculated from the fits used in this work at the CorreSpondéalculations were done at the pressures and temperaiures of
mgdPTelnfoT;éa) ;he OFl’.E:jn qlrc:lleggz]_arf for H,-Xe atf;O.z bar  those experiments cited in the figures. The results agree with
and | = , the solid circle[83] is for pure Hp at the same the experiments within the accuracies given above. It is in-
condition, and the squaréour measuremehtis for He-Sk at teresting to note the agreement between our measussd
P=28.1 bars andT=20.5 °C. (b) The triangles[84] are for .
(b) langles[84] the calculated one for He-QRn Fig. 2(a). The measurement

He-CQ, at P=28.5 bars and =27.5 °C and the diamond85] are . . .
for Ne-Ar at P=31.0 bars and = 27.5 °C. method ofA and more comparisons are given in Sec. Il D.

N; (25) B. Dimensionless numbers
1tN, Now we can calculate the four dimensionless material
i properties required in the study of RBC in binary-gas mix-
fori=1 and 2. Then tures, namely, the separation ratlg, the Lewis numberZ,
the Dufour numbeQ, and the Prandtl number. In Figs.
‘9_'“) - RT (26) 4-7 these parameters are presented as functions of the mole
dC);p C(1-C)[CM+(1-C)M,]’ fraction X of the heavy component foP=22 bars and
T=25 °C. The separation rati¥ for all six mixtures igposi-

Mi:fi(P,T)+RﬂnN

which is used to calculate the Dufour numipEg. (8)]. The
quantity (@u/dC)1 p becomes infinite whe@ approaches 0
orl.

0.8
5. Accuracy of the calculation

We estimated the accuracy of the above calculations by 0.6
comparing the results with literature data and our own mea-
surements ofn for the mixtures. For the pure gases, the
estimated accuracy is better than 2% for all properties
(p, 7, N, andCp). For the six binary mixtures, the esti-
mated accuracies are about 2% forland 7, 2-5 % for\, 02}
4-7 % forD, and 5-10 % foky. The accuracy is better for
noble-gas mixtures than for mixtures involving polyatomic
molecules. Because of the strong pressure dependence of
kt and the lack of data at elevated pressures, the accuracy of
kt is relatively poor. There are no experimental data for
Cp. but we estimated that its accuracy is within 5% for the
relatively low pressures used in this experiment. FIG. 4. Separation rati& as a function of the mole fraction

In Figs. 1-3 we present several examples of the sheax of the heavy component fd?=22 bars andr =25 °C.

=044
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FIG. 6. Dufour numbe as a function of the mole fractioX
of the heavy component. The curves that are not labeled are for
H,-Xe, He-Xe, He-CQ, and He-Sk from top to bottom. The
FIG. 5. Lewis numbel as a function of the mole fractiox of ~ curves for H-Xe and He-Xe are nearly the same. For these data
the heavy component. Solid line, ,FXe; dashed line, He-Cg  P=22 bars andr=25 °C.
dot-dashed line, He-Sf-dotted line, Ne-Ar. To improve the clarity
of this figure, we do not plot the results for Ar-GGnd He-Xe, estingly, for all mixtures except Ar-CQ the Prandtl number
which are close to those of Ne-Ar and,#e, respectively. For is lower than that of either pure component over most of the
these datd®=22 bars andr =25 °C. range of X (Fig. 7). The minimum value ofs decreases
almost monotonically with increasing! as shown in Table
tive (Fig. 4 and goes to zero & =0 and 1[Eqg. (5)]. The 1I.
maximum valueb ., is strongly affected by the molar-mass ~ One sees from Figs. 4 and 6 and Table Il thfaandQ do
ratio not both have large values under the same conditions. Since
the strength of the Dufour effect depends QW and
M=Mz/My (27) L£QWV? [Eq. (10)], we plotted these two parameter combina-
tions vsX for Ar-CO, and He-Sk in Fig. 8. The values of
'both £LQW¥ and £LQW¥? are so small for Ar-CQ that the
Dufour effect is very weak even thougd is large. For
ﬁele—SFG, the value ofCQW? is small, butZQW can be rela-

(Table Il). If M is close to one, the separation ratio is small
e.g., ¥ .y is only 3.2<10° 2 for Ar-CO,. However, when
M>1, the separation ratio can be quite large, as in the ca

of .He'SFﬁ' where\Ifmax.zo.SS. The peak position o¥ (X) tively large. Hence it is not straightforward to determine the
shifts to low X as M increases. In the case of noble-gasgyanqth of the Dufour effect for this mixture without addi-

mixtures, the separation ratio increases monotonically Withona1" analysis. Therefore, we discuss the influence of the
M at fixed X. Linz noted similar behavior in a previous pfor effect on the onset of convection in detail in Sec.
analysis of Lorentz-gas mixtur¢d1]. This monotonic rela-

tion does not hold well for binary-gas mixtures involving
polyatomic moleculegFig. 4).

The Lewis numbers increase wik from minimum val-
ues between 0.2 and 0.7 neé&+ 0 to maximum values be-
tween 1.6 and 22 nea¢=1 (Fig. 5. The maximum value is It is worthwhile to understand why the Prandtl number is
22 for He-SK and 13.7 for H-Xe. On the other hand, the lowered in binary-gas mixtures. This may be useful also in
Dufour number is proportional to ©{1—C) [Eq.(26)] and  design engineering involving heating or refrigeration sys-
thus diverges in the pure-gas limitBig. 6). The minimum  tems [50,90, where reducingec may increase the heat-
value of Q(X) is about 34 for Ar-CQ and 3.2 for Ne-Ar, transfer coefficient. Kinetic theory for rigid-sphere molecules
but Q is close to zero for the other four mixtures with [48] predicts =a(MT)¥%82Q and A=b(T/M)¥? 52Q,
M>10 except near the pure-gas lim{i&g. 6). More inter- wherea andb are constantsg is the molecular diameter,

C. Why is the Prandtl number lowered
in binary-gas mixtures?

TABLE Il. Molar-mass ratioM =M, /M; and minimum Prandtl number,;, of six binary-gas mixtures.
The values of¥, £, andQ at X=0.5 are also shown. For these examples25 °C andP =22 bars.

Dimensionless properties At=0.5

Mixture M O min v L Q

Ar-CO, 1.1 0.683 0.0032 1.085 37.82
Ne-Ar 2.0 0.628 0.035 0.912 3.519
He-CGO, 11.0 0.408 0.268 1.496 0.395
He-Xe 32.8 0.209 0.299 1.285 0.427
He-SFKy 36.5 0.300 0.470 2.565 0.166

H,-Xe 65.1 0.168 0.232 1.238 0.357
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FIG. 7. Prandtl number as a function of the mole fractioX of
the heavy component. For these dBta 22 bars andlr =25 °C.

and Q is a collision integral. For a monatomic gas,
cp=(5/2)R/M and o=(7/\)c,=2/3. Using a mole-
fraction-weighting (MFW) approximation, Giacobbg50]
found

_ X (MST) P X(MT) 2
7] (1_X)51291+X52292

(28)

and

L (A=X)(TIM Y2+ X(TIMp) 2
B (1—X)86,°Q 1+ X8,°Q,

(29

for binary noble-gas mixtures. The mixture heat capacity i

also c,=(5/2)R/M, with M given by Eq.(12). Then the
Prandtl number is

(1= X)+XM*M2
[(1=X)+XIMYP[(1=X)+XM]"

2
g= § (30)

LQy or LQy?

~ n
-t (4] n (6]
T T T T
L 1 1 1

©
o

FIG. 8. Coefficients of the Dufour effect in EGLO), LQW and
LQW?, for He-SK; and Ar-CO,. Solid line, LQ¥? for He-SF;;
dashed line, LQW for He-SF;; dot-dashed line,LQW¥? for
Ar-CO,; dotted line, LQW¥ for Ar-CO,. For these examples
P=22 bars andr=25 °C.

15 T T T T 5
14
~ _
< 2
:
: X
2 2
g -
<
S &

FIG. 9. Ration/\ (dashed cunjeand the heat capacity per unit
massc, (solid curvg as a function ofX for He-SFK;. For this ex-
ampleP=22 bars andr=25 °C.

It can be shown analytically that the denominator in &)

is larger than the numerator foGX<1 if M>1. The de-
nominator equals the numerator for pure gasés 0,1). A
larger value ofM yields a smaller value of for a fixed

X. Therefore, the Prandtl number of binary-gas mixtures is
always smaller than that of pure gases for a rigid-sphere
model. The smallest value af decreases with increasing
M. This argument can be extended to binary-gas mixtures
involving polyatomic molecules by employing the Eucken
correction[48] in the estimate of the thermal conductivity of
polyatomic gases. For two pure componenta <M, so the
ratio is small for the light component and large for the heavy
one. Since the square roots of the molar masses enter into
n/\, the ratio grows relatively slowly aX increases until

X is close to ondsee Fig. 9 for an example of a real gas
mixture). However, in thenassheat capacitg,,, the mass of
the heavy molecule is more important aniddrops quickly

{'SX increases from 0 and then begins to level @fig. 9.

ence the product of)/\ andc, reaches a minimum at a
middle value ofX.

In Fig. 10 we compare the estimates based on the MFW
approximation with our numerical results fér=1 bar and
T=25°C for four mixtures. In the case of a monatomic
(noble gas mixture, the MFW method predicts a minimum
value of o very close to the real value, but at a somewhat
different concentratiofiFig. 10@)]. In the case of mixtures
involving polyatomic gase$Fig. 10b)], two MFW curves
are shown for each mixture: the dashed curve assumes a
polyatomic molecule to be a monatomic one having the same
mass, while the dot-dashed curve takes the internal degrees
of freedom into account when estimating the thermal con-
ductivity and heat capacity. It is apparent that the internal
degrees of freedom increase the minimum Prandtl number.
The increase is more significant when a polyatomic molecule
consists of a larger number of atoms. For example, the
molar-mass ratio! of He-SF; is larger than that of He-Xe,
but its minimumo is considerably higher than that of He-Xe
(Fig. 7). Therefore, B-Xe is actually the binary-gas mixture
giving the smallestr, since all mixtures with a largem
involve more internal degrees of freedom.

Ill. EXPERIMENTAL METHOD
A. Apparatus and gases

The apparatus was described in detail by de Breyal.
[8]. We used three convection cells with=30 (cell 1:
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FIG. 11. Calibration of the thermal conductaneg(T;,0)
(in W/K) for cell 1 atT,=21.0 °C. From left to right, the circles are
the experimental results for §FCO,, Ar, N,, Ne, and He. The
solid curve is a fit to the total conductanc®=0.1624
+7.427—1.0/(6.592+ 431.3A). Here\ is in W/mK. The dashed
and dot-dashed lines are the gas sample and wall conductance, re-
spectively.

He-CO,, and He-Sk mixtures were prepared in our labora-
tory from the pure gases. Before filling the mixing cylinder,
we flushed it with the first component several times. After
the cylinder was filled with the first component, the pressure
P, and temperaturd; were measured and the gas density

: i . was calculated from the equation of state. After the second
and T=25 °C) with the estimates based on the MFW approxima-

tion (dashed and dot-dashed line$he dashed curves correspond component had been added,hthe final pre§:§tjr&r1d tﬁm_
to the approximation that all molecules are monatomic, while theDeraturET were measured. The concentration was then de-

dot-dashed curves take the internal degrees of freedom into accouf@mined from the mixture’s equation of state by finding the
in the thermal conductivity and heat capacitg) Noble-gas mix-  valueX that gives the correct density of the first component.
tures Ne-Ar and He-Xe antb) the mixtures He-C@ and H,-Xe, ~ The pressures and temperatures were always measured after
which involve polyatomic molecules. thermal and concentration equilibrium was reached. To mini-
mize the error from uncertainties in the equation of state
r=43.2 mm,d=1460 mm, I'=29 (cell 2 (which is largest at the highest pressireke final mixture
r=43.0 mm,d=1500 mm, and I'=70 (cell 3: pressure was kept as low as possible and yet high enough to
r=42.3 mm, d=0.608 mm. They consisted of a sapphire fj the convection cell to the desired pressure of the experi-

top plate, a diamond-machined aluminum bottom plate, anghent The concentration accuracy of our mixtures was
circular sidewalls made of porous filter paper. The pIatest(l_Z) %.

were parallel to within Zum. The pressure was regulated to

+0.005 bar. The top plate was held at a constant temperaturi@ The onset of convection was determined by measuring the
T, regulated to= 1 mK by circulating bath water, while the usselt numbe\’ and the shadowgraph-image contrast. By

bottom-plate temperaturd. . requlated to+0.5 MK, was definition, N=1 in the conduction state. As convection
varied a% the ex F;rimentf:l)I,cong'][rol aram_etér The’ as-fille farts, V increases withAT because the heat transport is

€ exp : parar . 9 nhanced by convection. The convection modulates the tem-
volume outside the convection cell was filled with open-pore

. . perature and concentration fields horizontally, leading to spa-
foam material to insulate the bottom plate and prevent con: . . o .
. tial variation of the vertical average of the refractive index in
vection. L . the x-y plane, which is visualized by the shadowgraph
All gases were purchased from Air Liquide America Cor- method[8,31] !
poration. Their purity was better than 99.99%. We used three T
pure gasegAr, CO,, and SFk;) and four binary-gas mixtures .
(Ne-Ar, He-CO,, He-SF;, and H,-Xe) in convection experi- B. Heat conduction of the cell wall
ments. By choosing different mixtures and pure gases and by To measure the Nusselt numh&trand the thermal con-
varying their concentration and pressure, we vageftom  ductivity of the gas mixtures precisely, we calibrated the heat
0.17 to 1.01,% from O to 0.80,£ from 0.67 to 6.35, and conduction of the cell sidewall using six pure gadde, Ne,
Q from 0.07 to 4.51(see Tables IV and V belowThree Ar, N,, CO,, and SK) with a wide range of known ther-
other pure gasefHe, Ne, and N) were used as well to mal conductivities. In the conduction state, the conductance
calibrate the heat conduction of the cell walls. (equal to the heat current per unit temperature differente
The H,-Xe mixture was purchased from the manufacturerthe gas inside the cell i©,=AN/d, where A= mr? is the
who specified the mole fraction of xenon to Be=49.6%  cell area. The conductaneg,, of the sidewall, foam, solid
with an accuracy of better thant1%. The Ne-Ar, supports, and the gas outside the cell can be modeled as heat

FIG. 10. Comparison of our best estimateslid lines,P=1 bar
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TABLE lll. Comparison of the thermal conductivities of binary-gas mixtures measured in this experiment
(\m) with the ones calculated with our programs.).

Mixture T (°C) P (barg X 100\, W/mK) 100\, (W/mK) 100 (Ay—Ac)/Ac]
Ne-Ar 23.0 36.65 0.680 2.584 2.560 0.9
He-CO, 21.0 30.60 0.537 4.888 4.730 3.3
He-CO, 225 25.97 0.879 2.457 2.459 -0.1
He-SF; 20.5 28.10 0.199 7.476 7.539 -0.8
He-SKy 25.0 18.79 0.578 3.156 3.162 -0.2
He-SK; 20.0 15.33 0.380 4.861 4.711 3.2
H,-Xe 21.0 20.67 0.496 5.539 5.271 51
H,-Xe 21.0 35.23 0.496 5.602 5.368 4.4

transport in porous medi®1]. Then the total heat conduc- C. The mean concentration forAT>0

tanceQ=Qy+ Q, can be expressed as For AT>0, the mean concentratioX, in the cell was

slightly smaller than the initial valuX, at AT=0 because
V>0 and the mean temperature inside the cell was larger
than that outside the cell. We obtaingg, by measuring
do/dT,=2(dQ/dAT) in the conduction state. One has

AN
Q: _+a1)\+a2_

d (31)

az\+a,’

wherea,; to a, are positive and depend on the properties of do 99 da 9Q
the filter paper and foam, the geometry outside the cell, the dT,, N m“L 9T N (33
thermal conductivity of solid supports, and so on. These fit-
ting parameters are temperature dependent. and

In the experiment, we kept the top-plate temperaflire o~ N AL dX
constant and increased the bottom-plate temperafiyre = <_) + (_) — (34)
This protocol caused the mean temperaflige= (T + T,)/2 dTm \dTm/y 19X/ ATy

and thus the average thermophysical properties @ntb
vary with AT=T,—T, [92]. Furthermore, adT changed, . , . . .

the mean concentratioX,,, inside the convection cell varied 058 - (a)

slightly because of the diffusion that resulted from the dif- F
ference of the mean temperatures inside and outside the cell. = 0.56 .
The concentration variation also changed the properties and ;

Q. In short, whemAT went up, T, increased, while&X,,, de- e 0.54 i

creased slightly folr>0. For our mixtures, both increasing
T, and decreasing,, raised the thermal conductivity, so
Q increased withAT. In the conduction state, we have the
linear relationship

AT, AT)=Qo(Ty) + Q" (TYAT (32

for not very largeAT and the thicker cells 1d=1.460 mm)
and 2 d=1.500 mm, as confirmed by the heat-transport
measuremerjsee Fig. 123)]. The quantityQ’ (T) turned out
to be small. For th¢hin cell 3 (d=0.608 mm), however, we
found that the quadratic terr@”(T,)(AT)? had to be in-
cluded in Eq(32). HereQ" is negative and its absolute value
is smaller thanQ' by a factor of 20—100.

We calibrated the cell conduction @t=T, by extrapolat-
ing Q(T;,AT) to AT=0. Figure 11 shows a calibration re-
§u|t for cell 1 _atT=21 °C. The average de\{'at'on of the FIG. 12. Heat-transport measurement for a He,Gflixture at
fitted curve[solid line, Eq.(31)] from the experimental data y_ 52 andP=30.6 bars ['=30). (a) The total thermal conduc-
(circles is about 0.4%. The cell contributio@y and the wall  anceQ(AT) for the whole range oA T in this experiment an¢b)
contribution@,, are plotted as dashed and dot-dashed curvesp(AT) near the onset of convection. Two solid lines(i are the
respectively, in Fig. 11. We note that the cell wall conductSiinear fits to the data below and above the onset of convection,
more than half of the heat. Similar results were obtained fofespectively. Their intersection gives the critical temperature differ-
the other cells. enceAT,=6.01 °C.

5.9 6 6.1 6.2

AT (°C)

63 64
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TABLE IV. Primary experimental results. Cell #=1.460 mm and =43.2 mm; cell 2d=1.500 mm
andr=43.0 mm; cell 3,d=0.608 mm and =42.3 mm.S; and S, are also listed here. See the text for

notations.

Run  Cell Gas Xpe Parg Tpe (°C) AT, S5 Si S5 S,

1 2 H,-Xe 0.49 20.67 25.83 9.65 0.37 0.71 0 -0.28
2 2 H,-Xe 0.49 35.23 22.19 2.38 043 0.71 0 -0.32
3 1 He-SF  0.19 28.09 22.53 4.05 0.19 0.18-0.17 -0.04
4 1 He-SF;  0.38 15.33 22.96 5.92 049 0.79-0.14 -0.49
5 1 He-Sky,  0.57 18.79 25.58 1.155 1.03 1.27-0.75 -—-1.09
6 1 He-CO, 0.50 20.29 30.30 18%

7 1 He-CO, 0.52 30.60 23.99 6.01 0.58 0.94-0.13 -0.64
8 1 Ne-Ar 0.66 36.65 26.07 6.13 0.84 1.16-0.10 -0.70
9 1 He-CO, 0.87 25.97 23.33 1.67 1.11 140-059 —-1.23
10 1 Ar 29.73 23.45 4.89 1.08 141 -048 —-1.25
11 1 Sk 4,95 23.01 4.00 1.12 142 -052 -1.25
12 2 CoO, 13.81 23.29 4.58 112 142 -0.73 —-1.25
13 1 Co, 17.74 22.25 2.49 123 142 -1.04 -1.25
14 1 Co, 24.92 21.46 0.920 121 142 -0.67 —1.25
15 2 Co, 33.25 21.16 0.317 123 142 -098 -—-1.25
16 3 He-Sk  0.35 35.85 26.54 11.68

17 3 He-SE  0.66 22.05 24.23 6.45

18 3 He-CQ 0.89 37.12 24.40 6.81

19 3 Sk 13.64 23.87 3.68

20 3 CoO, 33.84 22.86 4.7

#Non-Boussinesq case, hexagonal patterns appeared or coexisted with rolls for very.small

where A\=\(T,) is the mean thermal conductivity. The tributed to a concentration error since the concentration ac-
value of 9Q/dN was calculated from Eq(31), while curacy given by the manufacturer is1%. The difference
(N10T)x and (ON/6X) were evaluated from the thermal may be largely due to the approximate nature of the method
conductivity of the gas mixture. The quantity@/dT,,), is  and the errors of the force constants for the Lennard-Jones
due to the temperature dependenceapfo a, in Eq. (31) potential[68]. In the remainder of this paper, we shall use
and was determined in the calibration of the cell conductiona , for the H,-Xe mixture andh . for the other five mixtures.
Assuming all quantities in Eq$33) and(34) to be constant,
we get dX/dT,, from Egs. (33) and (34) and thus IV. EXPERIMENTAL RESULTS
Xmn=Xo+(dX/dT,,)AT/2. For¥ >0, dX/dT,,<0. _
A. Onset of convection

We determined the onset of convection for each gas or
mixture by measuring the heat transport and the shadow-
graph contrast. A typical example of heat-transport measure-

The thermal conductiviti of a gas mixture is determined ments is given in Fig. 12 for a run with a He-GOnixture
from Eq. (31) by measuringQ with the gas mixture in the having an initial concentratiod=0.537 (P=30.60 bars, run
cell. The measured thermal conductivitieg and the calcu- 7 in Tables IV and V. The top-plate temperature was fixed
lated ones\. are given in Table Ill. The deviation atT,=21.0 °C, while the bottom-plate temperaturg was
(Am— A/, listed in the table results from the errors of the increased in small steps from 21.0 °C to 33.5°C. We al-
thermal conductivity measurement and the determination ofowed 2—6 h(over 2I'%t,, wheret, is the vertical thermal
the concentration. The latter affecdts. diffusion time at eachAT for transients to decay before

The values of\,, and A, agree well for Ne-Ar and taking a time average of the total powgrsupplied to the
He-CG, at X=0.879. The deviation of 3.3% for He-GCat  bottom plate. Figure 12) gives the conductanc@=p/AT
X=0.537 may be largely due to the concentration error sinceersusAT for this run. WhenAT went up from zero,Q
we know that the accuracy of; is within 2% for He-CGQ, increased slowly and linearly in the conduction state. This
mixtures by comparing\. with independent experimental increase is attributable primarily to the change in the mean
data in the literaturdsee the Appendjx If, for instance, concentration discussed in Sec. Ill C and to a lesser extent to
X=0.527, then\.,=4.818<10 2 W/mK, which is only the temperature dependence of gas conductivity and the wall
1.4% smaller than\,,. For three He-SEk mixtures, the conduction. At AT~6.0 °C, Q started to grow faster,
agreement is reasonably good, indicating that the approxishowing that convection occurred. An enlarged view of
mate method due to Monchiait al. [71-73 is fairly accu- Q(AT) near the onset of convection is given in Fig.(1)2
rate for this mixture. Howeven ., is more than 4% larger To find the critical temperature differenderl ;. precisely, we
than \. for H,-Xe. This deviation can only be partially at- fitted straight lines to the data below and above onset in Fig.

D. Measurement of the thermal conductivity
of the gas mixtures
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TABLE V. Dimensionless parameters and derived results for 0.08 — : : : : :
the experimental runs summarized in Table IV. See the text for
notations.
0.06 - .

Run T L v Q re re ke K »

o 0.041 |
1 0.17 113 023 034 061 063 28 29 v
2 0.18 119 029 034 054 058 28 29
3 030 067 080 007 023 025 24 24 0.02 1 ]
4 0.33 152 052 012 045 047 27 28 -
5 043 337 038 020 055 063 28 3.0 023 59 & 61 62 63 64
6 044 147 026 039 061 063 29 29 AT (°C)
7 047 161 030 041 062 061 29 29
8 064 107 003 451 088 092 28 31 FIG. 13. Determination oA T, by the shadowgraph method for
9 069 502 008 181 0.85 0.89 29 3.1 the experiment in Fig. 12¢12), as a function ofAT. The data
10 0.69 0 1.00 100 3.1 3.1 belowAT, are fitted to a horizontal line, while the data above
11 0.79 0 0.97 1.00 31 3.1 AT, are fitted to an inclined line. The intersection of the two lines
12 0.83 0 1.00 1.00 31 3.1 9vesAT.=6.01°C.
13 0.86 0 098 100 31 3.1 . . .
14 0.91 0 098 100 31 31 heat conduction is enhanced so little AT . <AT<AT

that AT, cannot be determined by heat-transport measure-

15 1.01 0 1.01 100 31 31 ments[§0 31
16 034 131 073 011 031 036 27 27 The C(;nvéction patterns appearing at onset were rolls
17 050 489 034 028 064 067 3.0 3.0 . . .
18 080 635 009 188 08. 088 31 31 whenAT,; was rt_elat|vely small. Because of sidewall forcing
1o 0.83 A 098 100 31 31 [10,11], as AT increased from below to a_bovATc, a
0 Lol 0 099 100 31 concentric-roll(targe} pattern appeared fir§Fig. 14a)]. It

became unstable as

e=AT/AT.—1 (36)
12(b). Their intersection giveAT.=6.01 °C+0.01 °C. Re-
sults for AT, obtained by this method are summarized in
Table IV. There we also list the mean concentratign. and
the mean temperaturg,,. at onset. Experiments with pure

gases are given in the table for comparison. _ small e [Figs. 14e) and 14f)]. For smaller Prandtl numbers,
~ In the shadowgraph meth¢8,31], the initial (incoming  he patterns appeared to be more susceptible to sidewall forc-
light intensity is Zo(x), wherex is the horizontal position ing '|n that case straight-roll patterns occupied only part of
vector within the cell. The shadowgraph imageAdt is de-  the cell even at very smal [Figs. 14c) and 14d)]. The
noted asZ(x,AT). We define the shadowgraph signal as  remainder contained curved rolls more or less parallel to the
sidewall. The patterns sometimes were slowly time depen-
I( - I(x,AT) 1. (35) dent because defects generated near sidewall moved through
’ Zo(x) the cell. Figures 14) and 14d) were taken from the same
run at a time interval of 56 min. Whea was increased
slightly, a secondary instability led to time-dependent pat-
When there is no horizontal refractive-index variation,terns with foci and defec{$-ig. 14b)] similar to those found
I(x,AT)=0 if we neglect experimental noise. When convec-in pure gases witlr=1 [5,12].
tion occurs, the refractive index is modulated horizontally, Hexagonal patterns appeared at onset in runs 6, 16, 18,
and for small modulatioh(x,AT) = én(x,AT) [8,31], where  and 20(Table IV) because theiA T was relatively large and
on(x,AT) is the vertical average of the deviation of the re-the Oberbeck-Boussinesq approximation fai[@d. Figure
fractive index from its mean value. Figure 13 shows the spai4(g) from a He-Sk mixture is similar to that found in pure
tial average(1?(x,AT)), of the square of the shadowgraph CO, [93]. Whene was increased slightly, hexagons and rolls
signal as a function A T near the ones of convection for the could coexistFig. 14h)]. As € was increased a little further,
experiment described in Fig. 12. FAT<AT., the small hexagons gave way completely to rolls.
positive constant value d12), (horizontal line in Fig. 1Bis The critical wave numbek. of the rolls at onset was
attributable to experimental noise. WhaT>AT,, there is  calculated by Fourier analysis of the shadowgraph images.
an initially linear increase ofl 2), with AT as shown in Fig. (The dimensionless wave number is defined as
13. The critical temperature difference determined by the&k=2wd/\,,, where\,, is the roll wavelength. We found
shadowgraph method iAT,=6.01 °C+0.01 °C. The two Kk <K¢=3.117 for convection in binary-gas mixtur€Eable
methods giving the samAT, demonstrates that the heat V), wherek is the critical wave number for convection in
transport is enhanced significantly as soon as convectiosingle-component fluids.
starts in binary-gas mixtures, similar to the case of pure flu- We calculated the critical Rayleigh numbBg and the
ids. In contrast, fobinary-liquid mixtures with >0, the  critical wave numbek, based on the linear stability analysis

increased 11]. After the target was completely destroyed at
large €, we reducedAT to just aboveAT,. For relatively
large Prandtl numberso(=0.4), time-independent straight-
roll patterns were produced by this method at sufficiently



6962 JUN LIU AND GUENTER AHLERS 55

FIG. 15. Nusselt number as a functioneofor the experiment in
Fig. 12.

the dimensionless numbess ¥, £, andQ corresponding

to these runs. The good agreement between experiment and
theory forr, andk. shows thafi) the thermophysical prop-
erties are determined quite accurately d@indthe evaluation

of the linear stability analysis37] is quite accurate. For most
mixtures,r is a little smaller tharrt. This is probably due

to the underestimation of the thermal diffusion ratipand

thus of ¥ at elevated pressures by considering only the sec-
ond virial coefficient forkt [Eq. (23)] (the thermal diffusion
ratio depends strongly on pressur&his idea is consistent
with the result for the two H-Xe mixtures(Table V); the

run at the larger pressure has a larger relative difference be-
tweenr¢ andrt.

B. The Nusselt number

We obtained the Nusselt numbef$ from the conduc-
tanceQy= Q— Q,, of the gas inside the cell. It is given by

Q(AT)  Q(AT)—Q,(AT)

N G eond AT Oy oondAT)

(37

where the heat conductance of the gas in the absence of

FIG. 14. Convection patterns close to ongej:and (b) H,-Xe convection

at X=0.48P=20.7 bars §=0.17, I'=29), and(a) e=0.025 and A .
(b) €=0.046; (c) and (d) He-SK; at X=0.38P=15.3 bars _n an
(0=0.33, I'=30), ande=0.038, and(d) was taken 56 min after QQ'CO”“(AT)_ d A(Tt)—}_o'SATdT (38)
(c) was imaged;(e) He-CO, at X=0.52P=30.6 bars and

€=0.055 (¢=0.47, I'=30); (f) pure CQ, at P=24.92 bars, and the sidewall contribution

€=0.043 =091, T=30); (g and (h) He-SK at

X=0.35P=35.85 bars §=0.34, I'=70), and(g) e=0.012 and AT)=O(T. AT)— AT 39
(h) e=0.021. For clarity, partial images are shown(g and (h). QAT =Q(T1,AT) Qg‘cond( ) 39

were determined from the heat-transport measurements in
of Hort, Linz, and Licke[37] in order to compare the theory the conduction stat¢Eq. (32)] and the calibration of the
with our experiment, using a computer program provided bysidewall conductiofEg. (31)]. Their AT dependence was
Hort and Licke. The stability analysis takes both the Soretextrapolated to the convection state. Figure 15 shads)
and Dufour effects into account. The calculations were dongor the measurements @¥(AT) described in Fig. 12. In the
for the thermophysical properties at the mean temperatureéonduction state {<0) A'=1, while N>1 in the convec-
Tme=Ti+AT/2 and the mean concentratidf,. at the on-  tion state.

set of convection. Near the onset of convection/ can be expanded as
In Table V we list the experimental result§ andkg for
re=R./Reo=AT /AT, andk, for several mixtures, as well N=1+S,e+S,e?+- - -, (40

as the corresponding theoretical predictimbsand ktc. The
mean temperatur@& . and the mean concentratiofy,,. at whereS; andS, depend ono, ¥, Q, and L. The coeffi-
onset were listed already in Table IV. In addition, we givecientS, is the initial slope ofA{€) at onset and is given by
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S, = lim (N=1)/e. (41) 15

e—0+

The coefficientS, determines howdA/de changes withe ®

near onset. We determined the sl&feandS; by a straight-

line extrapolation at smalk of the experimental data for 05k

(N—=1)/e from €>0 to €=0. The resultsS] and S5 for ’ °

several runs are given in Table IV. The valueSifis sig-

nificantly larger than zero, in contrast & =<O(10 2) for

convection in binary-liquid mixture$30,31. The quantity 0 0.2 0.4 0.6 0.8

S is always negative, indicating that increases more ¥

slowly ase increases. T —— T ———— T ——
For pure fluids  =0), the theoretical valustl(o) for an 109k 4

infinitely extended pattern of perfect straight rolls was calcu- E

lated exactly by Schier, Lortz, and Buss§94]. Although

S, vanishes ag goes to zero, the dependence®iis weak

for =0.35 andS; =1.42 foro=1. Such a calculation is not

available for the mixtures¥>0). However, employing a

low-order Galerkin approximation for nonslip, impermeable

boundary conditions at the top and bottom of the cell, L o

Hollinger and Licke [38] derived an eight-mode Lorenz (b)

model that pertains when stationary straight rolls are stable 10 e TS

close to onset. We evaluated the initial sIG¥ of A/ from 8sf

this model for the parameters of our experimental runs.

However, due to the approximate nature of the model FIG. 16. Initial slope of the Nusselt number at ongar.S; as a

[38,95,98, it gives Si'"=1.718 independent ofr in the function of ¥ and (b) S; as a function ofsS’ [see Eq.(43)] on

pure-fluid limit rather than the exact value 1.422 fomear l0g-log scale. The experimentaheoretical values are given by

one. Thus we made the empirical but reasonable estimaf®!id (open circles.

S|=(1.422/1.718%/" . These values are compared wif

in Table IV. They are found to be systematically higher than

S; by 0.2-0.3. This difference between experiment and

theory has long been known for pure flui@¥]. Presumably

it is attributable to the depression of the heat transport in the _ o

experimental system by the boundaries, by roll curvatureliowever, for pure fluidss, (W =0)=2, which is larger than

and by defects in the pattern. We conclude that at best thée result of Schier et al. for realistic rigid boundaries. Thus

difference S5(W = 0)— S2(¥) can be compared effectively We examine only the difference;'(0)—Si'(¥,£) as a

with the corresponding theoretical prediction. Table IV sug-function of the scaling variable

gests that the agreement for this difference is quite good.

~ Itwould seem instructive to examirg§ andS; as a func- 5S'=2-sl(v ). (43)

tion of the dimensionless parameters that are relevant to the

mixtures. Because, in principl&; depends oV, L, o, o o

andQ, it is not very helpful to plotS, as a function of any ~This is done in Fig. 1), where we used the average ex-

one of these parameter. We illustrate this in Figal@vhich  perimental values{(0)=1.14 from the three pure gases and

showsS; as a function of’. The results show no reasonable

trend and scatter widely. Thus we searched for a parameter

combination that would serve as an approximate scaling of o ee .

variable in the sense that the experimental and theoretical . .o *

data forS;, when plotted against this variable, will fall close 8

to the same smooth curve. As already pointed out above, the 05t o o .

o dependence dd; is weak for pure fluids and=0.35. The %) O §0®

eight-mode model show{88] no dependence dB; on o. *

Thus we neglected from the scaling variable. Examination At ] .

of the eight-mode model’s solutiof88] reveals thas; de-

pends only very weakly o for the parameters of our ex- . . . . . . )

periments. Thus, to a good approximati@hmay also be 0 02 04 06 08 1 12 14

dropped. So finally we need an appropriate combination of Sy

¥ and £. Here we are guided by the analytic result for

(unrealistig permeable and freéslip) horizontal boundary FIG. 17. Value ofS5 (Sb) as a function oS5 (S}). The experi-

conditions[ 98] mental(theoretical values are given by solitbpen circles.

Sy
o)

0) - S4(¥)
o

-

(=]
T
®0
.

Sy(¥

2[1+¥(1+L7?)]
1+W(1+ L2+ L8

Sl(¥,0)= (42
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is at most of the same size as typical experimental errors and

1 . .
@ ' ' ) much smaller than the Soret effect. The other four mixtures
osl i (Ne-Ar, He-CO,, He-Xe, and H-Xe) show a similar or
weaker Dufour effect.
% | .
£ 06
o B. Summary
Yoaf 1
In this paper we presented the results of an extensive ex-
0.2 s perimental investigation of Rayleigh-Bard convection in
binary-gas mixtures. A complete set of thermodynamic and
%, ) oa 08 08 y transport properties was accurately determined for six
X binary-gas mixtures(He-CO,, He-SF;, He-Xe, Ne-Ar,

Ar-CO,, and H,-Xe) by a combination of fitting data in the
literature, doing molecular-theory calculations, and measur-
ing the thermal conductivity ourselves. All six mixtures have
positive separation ratio¥ >0 (Fig. 4). The Lewis number
L is of order ondFig. 5. An important feature of binary-gas
mixtures is that their Prandtl number can be lower than that
of the two pure component§-ig. 7). We discussed the
physical reason and showed that the minimum Prandtl num-
ber that can be reached is about 0.16. Such low Prandtl num-
. . . . bers may be of technological importance in design engineer-
0 0.2 0.4 06 0.8 1 ing involving heating or refrigeration systerfts0,90.
X Both the heat-transportNusselt number\) measure-
ments and the shadowgraph imaging gave the same critical
FIG. 18. Comparison ofa) r, and (b) k. for the onset of con- temperature differenc& T, for the onset of convection in
vection in a He-SE mixture with (solid curveg and without ~ binary-gas mixtures. The measured=R./R;, and k.
(dashed curveshe Dufour effect. The conditionB=22 bars and (Table V) agree well with the prediction of linear stability
T=25 °C are the same as those in Fig. 8. analysis[37]. In contrast to convection in binary-liquid mix-
tures having¥>0, A increases significantly in binary-gas

the predictionS, (0)=1.42 of Schiter et al. Both theory and ~ Mixtures as soon aR is exceeded and convection starts.
experiment, to a very good approximation, fall on a singleconS'Stent with predictions35] for this parameter range, the
curve ' ' convection patterns appearing near or(§ég. 14 are rolls
The theoretical value 08, was also estimated by using (hexagons appear at onset for relatively lafgg;). So the
the eight-mode model for both pure gases and binary-ga onvection in binary-gas mixtures behaves qualitatively like

mixtures. The correction factor discussed above was enf: a<tkin :?Tf? flll'Jr:des,iniﬁgfesﬁgp;h%ﬂchtiscﬁlj ;Ls?ecl)ts njrl%er
| L= (1.422/1.718%,'" . The val L is i c=Heo =22l _ _
E]O'?'ISSI,eSR/Sﬁ‘or(some/ex e?i%znental ?u\r/]z uli c'>:f‘|32 I%'iﬁg (dMde€) .-+ at onset was compared with that predicted by
t b i 9 an eight-mode Galerkin truncati¢88,96. Good agreement
S, are plotted as a function &; andS;, respectively. We

- . o ~ was found for the variation of this slope with and £ (Fig.
find thatS; agrees withS;, though both of them are quite 1) Based on the gas-mixture properties determined in this

scattered and a smooth curve does not seem to exist. Theredﬁper we found that the Dufour effethe reciprocal pro-

a clear trend thak, decreases with increasiry, i.e., ase  ¢ess of the Soret effecis very weak in binary-gas convec-
increasesd\/de decreases more slowly for smaller initial o (Fig. 18.

slopeS; = (d\/de€)—o+ - In view of the great variety of nonlinear phenomena
found in binary-liquid mixtures withl’ <0 [29], it would be
V. DISCUSSION interesting to study RBC in binary-gas mixtures with nega-

tive separation ratios. Gas mixtures can have lower Prandtl
numbers, larger Lewis numbers, larger aspect ratios, and
The influence of the Dufour effectQ0) depends on faster time scales than liquid mixtures. Unfortunately, it ap-
LQW¥ and £LQW¥? [see Eq(10)]. In Sec. Il B we found that pears that the separation ratio is always positive for relatively
the values of these parameter combinations are small, fdow pressures. A negativd can perhaps be found in the
instance, for Ar-CQ (P=22 bars, T=25°C) even critical region[99] and in very dense gasg€s00]. However,
thoughQ itself is not small(Fig. 6). For He-Sk; under the it is hard to obtain a complete set of thermophysical proper-
same conditions£QW? is also small, buLQW can be rela- ties under those conditions.
tively large (Fig. 8. Thus we examine the linear properties  Although so far binary-gas mixtures have been limited to
of this mixture, using stability analys{87]. In Fig. 18 we W¥>0, they provide unigue opportunities for the exploration
plot r. and k. for the He-SFk mixture with (Q>0, solid  of various nonlinear phenomena in RBC at Prandtl numbers
line) and without Q= 0, dashed lingthe Dufour effect. The between 0.16 and 1 and for Lewis numbers of order one. An
value ofr . increases very slightly when the Dufour effect is important example is high-Rayleigh-number turbulent con-
turned off, whilek, decreases by a small amount. The effectvection[7], where the nature of the boundary layers should

A. The strength of the Dufour effect
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change asV, o, and£ are varied. Another is the quantita- from a fit to the data in Ref105] and in Ref[106], respec-

tive study of the effect ofr and £ on various secondary tively. For the heat capacit¢, we used a fit to the data in

instabilities and spatiotemporal chaos. Using gas mixturedyef. [54].

we found recently that the onset of spiral-defect chaos de-

pends significantly on the Prandtl numde@5]. A detailed f. H, (normal hydrogen)

study of complex spatiotemporal behavior of convection pat-  The second virial-coefficierB was obtained from a fit to

terns will be presented in another paper of this seji§ds the data in Refd:63,107. The zero-density; and\ are from

fits to the data in Refl83]. The density dependence gfis
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APPENDIX pressure is a fit to the data in R¢l04] and its pressure

dependence is a fit to the data in Reif12].
Here we give major references for each gas and mixture.

The actual methods used to obtain the thermophysical prop-

erties are briefly described. Since a large number of theoret- 2. Binary-gas mixtures
ical and fitting equations are involved, we do not reproduce a. Ne-Ar
them here.

The second virial coefficientB and zero-density
7, N\, D, and k; were calculated from statistical-
mechanical theory59]. We took the density dependence of
a. Co, 7 from that of the two pure componeni§3], while the
density dependence af was obtained by fitting to the data
$n Refs.[53,85. No data are available for the pressure de-
pendence ob andky, so the models discussed in Sec. Il A3
were used to estimate their pressure dependence. We cross-
checked some of the results using the data in Refs.
[81,85,89,102

1. Pure gases

A precise high-order expansion for the equation of state i
given by Vukalovich and Altunifi55]. Fits of suitable equa-
tions to data fory and\ are summarized by de Bruyet al.
[8]. The specific hea€,, is tabulated in Ref[55].

b. He

The equation of state is given by Tsederbera@l.[52] up b. He-Xe
to the third virial coefficient. These authors also gvgand
fits to » and A. Some of their fits were cross-checked by
experimental data from Ref101].

The second virial coefficientB and zero-density
n, N\, D, andk; were calculated by statistical-mechanical
theory [59]. The density dependence ef and A was ob-
tained from the two pure component3,103. No data are
available for the pressure dependenceDoind k;, so the
The second virial-coefficier, zero-densityp, and zero-  models discussed in Sec. Il A3 were used to estimate their
densityN were calculated from kinetic theof$9]. The den-  pressure dependence. Some of these results were cross-
sity dependences aof and\ were obtained from fits to the checked by the data in Ref78,113—-11%
data in Ref[53]. The heat capacitg,, is based on the data
in Ref. [53]. We cross-checked the various estimates using c. He-CO,
the experimental data in Refsl02,103.

c. Ne and Ar

An equation of state containing up to the fifth virial coef-
d. Xe ficient was used. The second virial coefficiEhtvas fitted to
) ) the data in Refd.64,1164. The third virial coefficientC was
Allfits for B, #, A, andC, are based on the data in Ref. fitted to the data at 0°C[116] using the formula
[53]. Some of the fitting equatlops are given in that book. WeC:Chexhe+ C.X2. Here a is the fitting parameter. The
cross-checked some results using the experimental data fropth and fifth virial coefficients were estimated from that of
Ref.[103]. pure CO, neglecting helium, i.eD=DX? andE=EX3.
For the zero-densityy and A, Eq. (21) was fitted to the
experimental data in Reft79,84l. Their density dependence
Our estimate of the second virial-coefficidhis based on was obtained from a fit to the data in Ref§9,84. The
a fit to the data in Ref[60]. The estimates of the zero- zero-densityD and k; were calculated from kinetic theory
density » and\ are fits to the data in Ref60] and in Ref.  [61]. The pressure dependencekgfis given in Ref[76] up
[104], respectively. Their density dependence was obtainetb 5 atm, while the pressure dependenc®ofvas estimated

e. N,
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from the model discussed in Sec. Il A3. The results for
andk; were cross-checked by the data in R¢#%6,87,117—
119].

d. Ar-CO,
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was based on the two pure components, while the fourth
virial coefficient was estimated from pure §FThe zero-
density » was calculated from kinetic theof$1], while the
zero-densityA was estimated by the approximate method
due to Monchicket al. (see Sec. Il AR The pressure depen-

An equation of state containing terms up to the fifth virial d8nce ofy and\ was taken from that of the two pure gases.

coefficient was used. The second virial coeffici@itwas
fitted to the experimental data in R¢66]. The third coeffi-
cient was based on pure At20] and CO2[55]. The fourth
and fifth coefficients were based on those of pure,@®@ne.
We fitted Eq.(21) for the zero-densityy and \ to the ex-
perimental data in Ref$121,123 and in Ref.[84], respec-
tively. The pressure dependencespfvas taken from that of

the pure components, while the pressure dependence of

was fitted to the data from R€B4]. The zero-densitp and
kt were calculated by kinetic theof$1]. The pressure de-

The zero-densityp andk; were also calculated from kinetic
theory[61]. However, we correctell; based on the experi-
mental data in Refd.76,86,87 since the calculated values
were systematically smaller than the experimental data. The
pressure dependence Dfis given up to 9 atm at 300 K by
Ref. [75], while the pressure dependencekgfis given by
Ref.[76] up to 5 atm.

f. H,-Xe
The second virial coefficient was determined from Refs.

pendence oky was estimated from the result on p. 617 of [53 63 107. The zero-density; was calculated from kinetic

Ref.[32]. The pressure dependencelbfvas evaluated from
the model discussed in Sec. Il A3.

e. He-SFg

theory based on a Lennard-Jones poterié®]. The zero-
density N was estimated by the method of Monchiekal.
The density dependence gfand\ was based on that of the
pure gases. The zero-densityandk; were calculated from

We used an equation of state containing terms up to th&inetic theory[68]. Their density dependence was estimated

fourth virial coefficient. The second virial coefficieBtwas
calculated from kinetic theory except thRt{, was corrected
using the data from Ref§64,65. The third virial coefficient

from the models discussed in Sec. Il A3. Some theoretical

results were cross-checked by the data in Refs.
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